3D Rendering and Ray Casting

Michael Kazhdan

(601.457/657)

HB Ch. 13.7, 14.6
FvDFH 15.5, 15.10
Announcements

• We have a new CA:
 ◦ Cindy Yang
 ◦ Office Hours: Wednesday 1:00-2:00 @ Malone 122
Rendering

- Generate an image from geometric primitives

Geometric Primitives (3D)
Rendering

• Generate an image from geometric primitives
3D Rendering Example

What issues must be addressed by a 3D rendering system?
Overview

• 3D scene representation
• 3D viewer representation
• What do we see?
• How does it look?
Overview

• 3D scene representation
• 3D viewer representation
• What do we see?
• How does it look?

How is the 3D scene described in a computer?
3D Scene Representation

- Scene is usually approximated by 3D primitives
 - Point
 - Line segment
 - Triangles
 - Polygon
 - Polyhedron
 - Curved surface
 - Solid object
 - etc.
3D Point

- Specifies a location
3D Point

- Specifies a location
 - Represented by three coordinates
 - Infinitely small

```c
struct Point3D {
    float x, y, z;
};
```

(x, y, z)

Origin
3D Vector

- Specifies a direction and a magnitude
3D Vector

• Specifies a direction and a magnitude
 ○ Represented by three coordinates
 ○ Magnitude $\|\vec{v}\| = \sqrt{dx^2 + dy^2 + dz^2}$
 ○ Has no location

```c
struct Vector3D {
    float dx, dy, dz;
};
```

$\vec{v} = (dx, dy, dz)$
3D Vector

- Specifies a direction and a magnitude
 - Represented by three coordinates
 - Magnitude $||\vec{v}|| = \sqrt{dx^2 + dy^2 + dz^2}$
 - Has no location

- Dot product of two 3D vectors
 - $\vec{v}_1 \cdot \vec{v}_2 = dx_1 \cdot dx_2 + dy_1 \cdot dy_2 + dz_1 \cdot dz_2$
 - $\vec{v}_1 \cdot \vec{v}_2 = ||\vec{v}_1|| \cdot ||\vec{v}_2|| \cdot \cos \theta$

- Cross product of two 3D vectors
 - $\vec{v}_1 \times \vec{v}_2 =$ Vector normal to v_1 and v_2
 - $||\vec{v}_1 \times \vec{v}_2|| = ||\vec{v}_1|| \cdot ||\vec{v}_2|| \cdot \sin \theta$
Cross Product: Review

• Let \(\vec{v}_1 = \vec{v}_2 \times \vec{v}_3 \):
 - \(dx_1 = dy_2 \cdot dz_3 - dz_2 \cdot dy_3 \)
 - \(dy_1 = dz_2 \cdot dx_3 - dx_2 \cdot dz_3 \)
 - \(dz_1 = dx_2 \cdot dy_3 - dy_2 \cdot dx_3 \)

• \(\vec{v} \times \vec{w} = -\vec{w} \times \vec{v} \) (remember “right-hand” rule)

• We can show:
 - \(\vec{v} \times \vec{w} = ||\vec{v}|| \cdot ||\vec{w}|| \cdot \sin \theta \cdot \vec{n} \),
 where \(\vec{n} \) is the unit vector normal to \(\vec{v} \) and \(\vec{w} \)
 - \(\vec{v} \times \vec{v} = 0 \)
3D Line Segment

- Linear path between two points
3D Line Segment

- Use a linear combination of two points
 - Parametric representation:
 \[p(t) = p_1 + t \cdot (p_2 - p_1), \quad (0 \leq t \leq 1) \]

```c
struct Segment3D {
    Point3D p1, p2;
};
```
3D Ray

- Line segment with one endpoint at infinity
 - **Parametric representation:**
 \[p(t) = p_1 + t \cdot \vec{v}, \quad (0 \leq t < \infty) \]

```c
struct Ray3D {
    Point3D p1;
    Vector3D v;
};
```
3D Line

- Line segment with both endpoints at infinity
 - Parametric representation:
 \[p(t) = p_1 + t \cdot \vec{v}, \quad (-\infty < t < \infty) \]

```c
struct Line3D {
    Point3D p1;
    Vector3D v;
};
```
3D Plane

- A linear combination of three points

\[p_1, p_2, p_3 \]
3D Plane

- A linear combination of three points
 - Implicit representation:
 » $\Phi(p) = ax + by + cz - d = 0$
 » $\Phi(p) = \langle p, \vec{n} \rangle - d = 0$
    ```
    struct Plane3D {
        Vector3D n;
        float d;
    };
    ```
 - \vec{n} is the plane normal
 » (May be) unit-length vector
 » Perpendicular to plane
 - d is the signed (weighted) distance of the plane from the origin.
3D Polygon

- Area “inside” a sequence of coplanar points
 - Triangle
 - Quadrilateral
 - Convex
 - Star-shaped
 - Concave
 - Self-intersecting

```c
struct Polygon3D {
    Point3D *points;
    int npoints;
};
```

Points are in counter-clockwise order

- Holes (use > 1 polygon struct)
3D Sphere

- All points at distance r from center point $c = (c_x, c_y, c_z)$
 - Implicit representation:
 \[\Phi(p) = \|p - c\|^2 - r^2 = 0 \]
 - Parametric representation:
 \[x(\phi, \theta) = r \cdot \cos \phi \cdot \sin \theta + c_x \]
 \[y(\phi, \theta) = r \cdot \cos \phi \cdot \sin \theta + c_y \]
 \[z(\theta, \phi) = r \cdot \sin \phi + c_z \]

```c
struct Sphere3D {
    Point3D center;
    float radius;
};
```
Other 3D primitives

• Cone
• Cylinder
• Ellipsoid
• Box
• Etc.
3D Geometric Primitives

- More detail on 3D modeling later in course
 - Point
 - Line segment
 - Triangle
 - Polygon
 - Polyhedron
 - Curved surface
 - Solid object
 - etc.
Overview

- 3D scene representation
- 3D viewer representation
- What do we see?
- How does it look?

How is the viewing device described in a computer?
Camera Models

• The most common model is pin-hole camera
 ○ All captured light rays arrive along paths toward focal point without lens distortion (everything is in focus)

Other models consider ...
 Depth of field
 Motion blur
 Lens distortion
Camera Parameters

• What are the parameters of a camera?
Camera Parameters

• Position
 ◦ Eye position: Point3D eye

• Orientation
 ◦ View direction: Vector3D view
 ◦ Up direction: Vector3D up

• Aperture
 ◦ Field of view angle: float xFov, yFov
 ◦ Resolution of film plane: int width, height
 ◦ Distance of film plane
 ◦ (Orientation of film plane)
Other Models: Depth of Field

Close Focused

Distance Focused
Other Models: Motion Blur

- Mimics effect of open camera shutter
- Gives perceptual effect of high-speed motion
- Generally involves temporal super-sampling
Traditional Pinhole Camera

- The film sits behind the pinhole of the camera.
- Rays come in from the outside, pass through the pinhole, and hit the film plane.
Traditional Pinhole Camera

- The film sits behind the pinhole of the camera.
- Rays come in from the outside, pass through the pinhole, and hit the film plane.

Photograph is upside down
Virtual Camera

- The film sits in front of the pinhole of the camera.
- Rays come in from the outside, pass through the film plane, and hit the pinhole.
Virtual Camera

- The film sits in front of the pinhole of the camera.
- Rays come in from the outside, pass through the film plane, and hit the pinhole.

Photograph is right side up
Overview

• 3D scene representation
• 3D viewer representation

• Ray Casting
 ◦ Where are we looking?
 ◦ What do we see?
 ◦ How does it look?
Ray Casting

• For each sample …
 ○ **Where**: Construct ray from eye through view plane
 ○ **What**: Find first surface intersected by ray through pixel
 ○ **How**: Compute color sample based on surface radiance
Ray Casting

- Simple implementation:

```java
Image RayCast( Camera camera , Scene scene , int width , int height)
{
    Image image = new Image( width , height );
    for( int i=0 ; i<width ; i++ ) for( int j=0 ; j<height ; j++ )
    {
        Ray ray = ConstructRayThroughPixel( camera , i , j );
        Intersection hit = FindIntersection( ray , scene );
        image[i][j] = GetColor( hit );
    }
    return image;
}
```
Ray Casting

Where?

Image RayCast(Camera camera , Scene scene , int width , int height) {
 Image image = new Image(width , height);
 for(int i=0 ; i<width ; i++) for(int j=0 ; j<height ; j++)
 {
 Ray ray = ConstructRayThroughPixel(camera , i , j);
 Intersection hit = FindIntersection(ray , scene);
 image[i][j] = GetColor(hit);
 }
 return image;
}
Constructing a Ray Through a Pixel
Constructing a Ray Through a Pixel

The ray originates at p_0 (the position of the camera). So the equation for the ray is:

$$\text{Ray}(t) = p_0 + t \cdot \hat{v}$$
If the ray passes through the point \(p[i][j] \), then the solution for \(\mathbf{v} \) is:

\[
\mathbf{v} = \frac{p[i][j] - p_0}{\|p[i][j] - p_0\|}
\]
If \(p[i][j] \) represents the \((i, j)\)-th pixel of the image, what is its position?
Constructing Ray Through a Pixel

• 2D Example: Side view of camera at p_0
 ◦ Where is the i-th pixel, $p[i]$? ($i \in [0, \text{height})$)

$\theta = \text{field of view angle (given)}$

$d = \text{distance to view plane (arbitrary = you pick)}$
Constructing Ray Through a Pixel

• 2D Example: Side view of camera at p_0
 - Where is the i-th pixel, $p[i]$? ($i \in [0, \text{height}]$)

$\theta = \text{field of view angle (given)}$
$d = \text{distance to view plane (arbitrary = you pick)}$

\[
\begin{align*}
p_1 &= p_0 + d \cdot \text{towards} - d \cdot \tan \frac{\theta}{2} \cdot \text{up} \\
p_2 &= p_0 + d \cdot \text{towards} + d \cdot \tan \frac{\theta}{2} \cdot \text{up}
\end{align*}
\]
Constructing Ray Through a Pixel

- 2D Example: Side view of camera at p_0
 - Where is the i-th pixel, $p[i]$? ($i \in [0, \text{height})$)

θ = field of view angle (given)
d = distance to view plane (arbitrary = you pick)

\[
p_1 = p_0 + d \cdot \text{towards} - d \cdot \tan \frac{\theta}{2} \cdot \text{up}
\]
\[
p_2 = p_0 + d \cdot \text{towards} + d \cdot \tan \frac{\theta}{2} \cdot \text{up}
\]
\[
p[i] = p_1 + \left(\frac{i + 0.5}{\text{height}} \right) \cdot (p_2 - p_1)
\]
Constructing Ray Through a Pixel

• 2D Example:

The ray passing through the i-th pixel is defined by:

$$\text{Ray}(t) = p_0 + t \cdot \hat{v}$$

- p_0: camera position
- \hat{v}: direction to the i-th pixel:
 $$\hat{v} = \frac{p[i] - p_0}{\|p[i] - p_0\|}$$
- $p[i]$: i-th pixel location:
 $$p[i] = p_1 + \left(\frac{i + 0.5}{\text{height}}\right) \cdot (p_2 - p_1)$$

- p_1 and p_2 are the endpoints of the view plane:
 $$p_1 = p_0 + d \cdot \text{towards} - d \cdot \tan \frac{\theta}{2} \cdot \text{up}$$
 $$p_2 = p_0 + d \cdot \text{towards} + d \cdot \tan \frac{\theta}{2} \cdot \text{up}$$
Constructing Ray Through a Pixel

Figuring out how to do this in 3D is assignment 2

Note:

- Given the vertical field of view angle, θ_v
Constructing Ray Through a Pixel

Figuring out how to do this in 3D is assignment 2

Note:

- Given the vertical field of view angle, θ_v
- And the aspect ratio, $ar = \frac{\text{height}}{\text{width}}$
Constructing Ray Through a Pixel

Figuring out how to do this in 3D is assignment 2

Note:

○ Given the vertical field of view angle, θ_v

○ And the aspect ratio, $ar = \frac{height}{width}$

The horizontal field of view angle, θ_h, satisfies:

$$\frac{\sin(\theta_v/2)}{\sin(\theta_h/2)} = ar$$
Ray Casting

Where?

```java
Image RayCast( Camera camera , Scene scene , int width , int height)
{
    Image image = new Image( width , height );
    for( int i=0 ; i<width ; i++ ) for( int j=0 ; j<height ; j++ )
    {
        Ray ray = ConstructRayThroughPixel( camera , i , j );
        Intersection hit = FindIntersection( ray , scene );
        image[i][j] = GetColor( hit );
    }
    return image;
}
```
Ray Casting

What?

Image RayCast(Camera camera, Scene scene, int width, int height)
{
 Image image = new Image(width, height);
 for(int i=0 ; i<width ; i++) for(int j=0 ; j<height ; j++)
 {
 Ray ray = ConstructRayThroughPixel(camera, i, j);
 Intersection hit = FindIntersection(ray, scene);
 image[i][j] = GetColor(hit);
 }
 return image;
}
Ray-Scene Intersection

• Intersections with geometric primitives
 ◦ Sphere
 ◦ Triangle
Ray-Sphere Intersection

Ray: $p(t) = p_0 + t \cdot \vec{v}, \quad (0 \leq t < \infty)$
Sphere: $\Phi(p) = \|p - c\|^2 - r^2 = 0$
Ray-Sphere Intersection

Ray: \(p(t) = p_0 + t \cdot \vec{v}, \ (0 \leq t < \infty) \)

Sphere: \(\Phi(p) = \|p - c\|^2 - r^2 = 0 \)

Substituting for \(p \), we get:
\[\Phi(t) = \|p_0 - t \cdot \vec{v} - c\|^2 - r^2 = 0 \]

Solve quadratic equation:
\[a \cdot t^2 + b \cdot t + c = 0 \]

where:
\[a = 1 \]
\[b = 2\langle \vec{v}, p_0 - c \rangle \]
\[c = \|p_0 - c\|^2 - r^2 \]
Ray-Sphere Intersection

Ray: \(p(t) = p_0 + t \cdot \vec{v}, \quad (0 \leq t < \infty) \)
Sphere: \(\Phi(p) = \|p - c\|^2 - r^2 = 0 \)

Substituting for \(p \), we get:
\[
\Phi(t) = \|p_0 - t \cdot \vec{v} - c\|^2 - r^2 = 0
\]

Solve quadratic equation:
\[
a \cdot t^2 + b \cdot t + c = 0
\]
where:

Generally, there are two solutions to the quadratic equation, giving two points of intersection, \(p \) and \(p' \). Want to return the first positive hit.
Ray-Sphere Intersection

- Need normal vector at intersection for lighting calculations:
 \[\vec{n} = \frac{\vec{p} - \vec{c}}{||\vec{p} - \vec{c}||} \]
Ray-Sphere Intersection

• More generally, if the shape is given as the set of points \(p \) satisfying:

\[
\Phi(p) = 0
\]

for some function \(\Phi: \mathbb{R}^3 \rightarrow \mathbb{R} \), then the normal of the surface will be parallel to the gradient.
Ray-Scene Intersection

- Intersections with geometric primitives
 - Sphere
 - Triangle
Ray-Triangle Intersection

• First, intersect ray with plane
• Then, check if point is inside triangle
Ray-Plane Intersection

Ray: \(p(t) = p_0 + t \cdot \vec{v}, \ (0 \leq t < \infty) \)
Plane: \(\Phi(p) = \langle p, \vec{n} \rangle - d = 0 \)

Substituting for \(p \), we get:
\(\Phi(t) = \langle p_0 + t \cdot \vec{v}, \vec{n} \rangle - d = 0 \)

Solution:
\[
t = - \frac{\langle p_0, \vec{n} \rangle - d}{\langle \vec{v}, \vec{n} \rangle}
\]

What are the implications of \(\langle \vec{v}, \vec{n} \rangle = 0 \)?

Algebraic Method
Ray-Triangle Intersection I

- Check if point is inside triangle algebraically:
 - Generate planes through the ray source and each edge
 - Check if the point of intersection is above each of these planes

For each edge
\[\vec{v}_1 = T_1 - p_0 \]
\[\vec{v}_2 = T_2 - p_0 \]
\[\vec{n}_1 = v_2 \times v_1 \]
if \((p - p_0, \vec{n}_1) < 0\)
return FALSE;
Ray-Triangle Intersection II

- Check if point is inside triangle parametrically

A point p is inside the triangle iff. it can be expressed as the weighted average of the corners:

$$p = \alpha \cdot T_1 + \beta \cdot T_2 + \gamma \cdot T_3$$

where:

- $0 \leq \alpha, \beta, \gamma \leq 1$
- $\alpha + \beta + \gamma = 1$
Ray-Triangle Intersection II

• Check if point is inside triangle parametrically

Solve for α, β, γ such that:

$$p = \alpha \cdot T_1 + \beta \cdot T_2 + \gamma \cdot T_3$$

And

$$\alpha + \beta + \gamma = 1$$

Check if the point is in the triangle:

$$0 \leq \alpha, \beta, \gamma \leq 1$$
Ray-Triangle Intersection II

• Check if point is inside triangle parametrically

In general, given \(p \in \mathbb{R}^3 \) and given three points \(\{T_1, T_2, T_3\} \subset \mathbb{R}^3 \) (in general position) we can solve for \(\alpha, \beta, \gamma \in \mathbb{R} \) such that:

\[
p = \alpha T_1 + \beta T_2 + \gamma T_3
\]

If \(p \) is in the plane spanned by \(\{T_1, T_2, T_3\} \):

\[
\alpha + \beta + \gamma = 1
\]

If \(p \) is inside the triangle with vertices \(\{T_1, T_2, T_3\} \):

\[
\alpha, \beta, \gamma \geq 0
\]
Ray-Triangle Intersection II

• Check if point is inside triangle parametrically

In general, given \(p \in \mathbb{R}^3 \) and given three points \(\{T_1, T_2, T_3\} \subset \mathbb{R}^3 \) (in general position) we can solve for \(\alpha, \beta, \gamma \in \mathbb{R} \) such that:

\[
p = \alpha T_1 + \beta T_2 + \gamma T_3
\]

To get \(\alpha, \beta, \gamma \), solve the system:

\[
\begin{pmatrix}
T_1^x & T_2^x & T_3^x \\
T_1^y & T_2^y & T_3^y \\
T_1^z & T_2^z & T_3^z
\end{pmatrix}
\begin{pmatrix}
\alpha \\
\beta \\
\gamma
\end{pmatrix}
=
\begin{pmatrix}
p^x \\
p^y \\
p^z
\end{pmatrix}
\]
Ray-Triangle Intersection II

- Check if point is inside triangle parametrically

In general, given \(p \in \mathbb{R}^3 \) and given three points \(\{T_1, T_2, T_3\} \subset \mathbb{R}^3 \) (in general position) we can solve for \(\alpha, \beta, \gamma \in \mathbb{R} \) such that:

\[
p = \alpha T_1 + \beta T_2 + \gamma T_3
\]

To get \(\alpha, \beta, \gamma \), solve the system:

\[
\begin{pmatrix}
T_1^x & T_2^x & T_3^x \\
T_1^y & T_2^y & T_3^y \\
T_1^z & T_2^z & T_3^z
\end{pmatrix}
\begin{pmatrix}
\alpha \\
\beta \\
\gamma
\end{pmatrix} =
\begin{pmatrix}
p^x \\
p^y \\
p^z
\end{pmatrix}
\]

This will fail if the vertices \(\{T_1, T_2, T_3\} \) lie in a plane through the origin.
Ray-Triangle Intersection II

- Check if point is inside triangle parametrically

In general, given \(p \in \mathbb{R}^3 \) and given three points \(\{T_1, T_2, T_3\} \subset \mathbb{R}^3 \) (in general position) we can solve for \(\alpha, \beta, \gamma \in \mathbb{R} \) such that:

\[
p = \alpha T_1 + \beta T_2 + \gamma T_3
\]

If \(p \) is in the plane spanned by \(\{T_1, T_2, T_3\} \) we can translate so that \(T_1 \) is at the origin and solve for \(\beta, \gamma \):

\[
\begin{pmatrix}
T_2^x - T_1^x & T_3^x - T_1^x \\
T_2^y - T_1^y & T_3^y - T_1^y \\
T_2^z - T_1^z & T_3^z - T_1^z
\end{pmatrix}
\begin{pmatrix}
\beta \\
\gamma
\end{pmatrix}
= \begin{pmatrix}
p^x - T_1^x \\
p^y - T_1^y \\
p^z - T_1^z
\end{pmatrix}
Ray-Triangle Intersection II

• Check if point is inside triangle parametrically

In general, given \(p \in \mathbb{R}^3 \) and given three points \(\{T_1, T_2, T_3\} \subset \mathbb{R}^3 \) (in general position) we can solve for \(\alpha, \beta, \gamma \in \mathbb{R} \) such that:

\[
p = \alpha T_1 + \beta T_2 + \gamma T_3
\]

If \(p \) is in the plane spanned by \(\{T_1, T_2, T_3\} \), so that

This is an over-constrained system but a solution exists since \(p \) is in the plane spanned by \(\{T_1, T_2, T_3\} \).

After solving for \(\beta \) and \(\gamma \), we can set:

\[
\alpha = 1 - \beta - \gamma
\]

\[
\begin{pmatrix}
T_2^y - T_1^y & T_3^y - T_1^y \\
T_2^z - T_1^z & T_3^z - T_1^z
\end{pmatrix}
\begin{pmatrix}
\beta \\
\gamma
\end{pmatrix}
=
\begin{pmatrix}
p^y - T_1^y \\
p^z - T_1^z
\end{pmatrix}
\]
Other Ray-Primitive Intersections

- Cone, cylinder, ellipsoid:
 - Similar to sphere

- Box
 - Intersect 3 front-facing planes, return closest

- Convex polygon
 - Find the intersection of the ray with the plane
 - Check that the intersection is above every triangle generated by the ray source and polygon edge.

- Concave polygon
 - Same plane intersection
 - More complex point-in-polygon test