3D Rendering and Ray Casting

Michael Kazhdan
(601.457/657)

HB Ch. 13.7, 14.6
FvDFH 15.5, 15.10
Announcements

• We have a new CA:
 ◦ Cindy Yang
 ◦ Office Hours: Wednesday 1:00-2:00 @ Malone 122
Rendering

- Generate an image from geometric primitives

Geometric Primitives (3D)
Rendering

• Generate an image from geometric primitives

Geometric Primitives (3D) → Rendering → Raster Image (2D)
What issues must be addressed by a 3D rendering system?
Overview

• 3D scene representation
• 3D viewer representation
• What do we see?
• How does it look?
Overview

• 3D scene representation
• 3D viewer representation
• What do we see?
• How does it look?

How is the 3D scene described in a computer?
3D Scene Representation

- Scene is usually approximated by 3D primitives
 - Point
 - Line segment
 - Triangles
 - Polygon
 - Polyhedron
 - Curved surface
 - Solid object
 - etc.
3D Point

- Specifies a location
3D Point

• Specifies a location
 ◦ Represented by three coordinates
 ◦ Infinitely small

```c
struct Point3D {
    float x, y, z;
};
```

\((x, y, z)\)
3D Vector

- Specifies a direction and a magnitude
3D Vector

• Specifies a direction and a magnitude
 ○ Represented by three coordinates
 ○ Magnitude $\|\vec{v}\| = \sqrt{dx^2 + dy^2 + dz^2}$
 ○ Has no location

```c
struct Vector3D {
    float dx, dy, dz;
};
```

$\vec{v} = (dx, dy, dz)$
3D Vector

• Specifies a direction and a magnitude
 ○ Represented by three coordinates
 ○ Magnitude $||\vec{v}|| = \sqrt{dx^2 + dy^2 + dz^2}$
 ○ Has no location

• Dot product of two 3D vectors
 ○ $\vec{v}_1 \cdot \vec{v}_2 = dx_1 \cdot dx_2 + dy_1 \cdot dy_2 + dz_1 \cdot dz_2$
 ○ $\langle \vec{v}_1, \vec{v}_2 \rangle = ||\vec{v}_1|| \cdot ||\vec{v}_2|| \cdot \cos \theta$

• Cross product of two 3D vectors
 ○ $\vec{v}_1 \times \vec{v}_2 = $ Vector normal to ν_1 and ν_2
 ○ $||\vec{v}_1 \times \vec{v}_2|| = ||\vec{v}_1|| \cdot ||\vec{v}_2|| \cdot \sin \theta$
Cross Product: Review

• Let \(\vec{v}_1 = \vec{v}_2 \times \vec{v}_3 \):

 \[
 \begin{align*}
 dx_1 &= dy_2 \cdot dz_3 - dz_2 \cdot dy_3 \\
 dy_1 &= dz_2 \cdot dx_3 - dx_2 \cdot dz_3 \\
 dz_1 &= dx_2 \cdot dy_3 - dy_2 \cdot dx_3
 \end{align*}
 \]

• \(\vec{v} \times \vec{w} = -\vec{w} \times \vec{v} \) (remember “right-hand” rule)

• We can show:

 \[
 \begin{align*}
 \vec{v} \times \vec{w} &= ||\vec{v}|| \cdot ||\vec{w}|| \cdot \sin \theta \cdot \vec{n}, \\
 &\text{where } \vec{n} \text{ is the unit vector normal to } \vec{v} \text{ and } \vec{w} \\
 \vec{v} \times \vec{v} &= 0
 \end{align*}
 \]
3D Line Segment

- Linear path between two points
3D Line Segment

• Use a linear combination of two points
 ◦ Parametric representation:
 » \(p(t) = p_1 + t \cdot (p_2 - p_1), \quad (0 \leq t \leq 1) \)

```
struct Segment3D {
    Point3D p1, p2;
};
```
3D Ray

• Line segment with one endpoint at infinity
 ◦ Parametric representation:
 » \(p(t) = p_1 + t \cdot \vec{v}, \quad (0 \leq t < \infty) \)

```cpp
struct Ray3D {
    Point3D p1;
    Vector3D v;
};
```
3D Line

- Line segment with both endpoints at infinity
 - Parametric representation:
 \[p(t) = p_1 + t \cdot \vec{v}, \quad (-\infty < t < \infty) \]

```cpp
def Line3D:
    Point3D p1;
    Vector3D v;
```

Origin
3D Plane

- A linear combination of three points
3D Plane

- A linear combination of three points
 - Implicit representation:
 - $\Phi(p) = ax + by + cz - d = 0$
 - $\Phi(p) = \langle p, \vec{n} \rangle - d = 0$
 - \vec{n} is the plane normal
 - (May be) unit-length vector
 - Perpendicular to plane
 - d is the signed (weighted) distance of the plane from the origin.

```
struct Plane3D {
    Vector3D n;
    float d;
};
```
3D Polygon

- Area “inside” a sequence of coplanar points
 - Triangle
 - Quadrilateral
 - Convex
 - Star-shaped
 - Concave
 - Self-intersecting

```c
struct Polygon3D {
    Point3D *points;
    int npoints;
};
```

Points are in counter-clockwise order

- Holes (use > 1 polygon struct)
3D Sphere

- All points at distance r from center point $c = (c_x, c_y, c_z)$
 - Implicit representation:
 $\Phi(p) = \|p - c\|^2 - r^2 = 0$
 - Parametric representation:
 - $x(\phi, \theta) = r \cdot \cos \phi \cdot \sin \theta + c_x$
 - $y(\phi, \theta) = r \cdot \cos \phi \cdot \sin \theta + c_y$
 - $z(\theta, \phi) = r \cdot \sin \phi + c_z$

```c
struct Sphere3D {
    Point3D center;
    float radius;
};
```
Other 3D primitives

- Cone
- Cylinder
- Ellipsoid
- Box
- Etc.
3D Geometric Primitives

- More detail on 3D modeling later in course
 - Point
 - Line segment
 - Triangle
 - Polygon
 - Polyhedron
 - Curved surface
 - Solid object
 - etc.
Overview

- 3D scene representation
- 3D viewer representation
- What do we see?
- How does it look?

How is the viewing device described in a computer?
Camera Models

- The most common model is pin-hole camera
 - All captured light rays arrive along paths toward focal point without lens distortion (everything is in focus)

Other models consider ...
- Depth of field
- Motion blur
- Lens distortion
Camera Parameters

- What are the parameters of a camera?
Camera Parameters

- **Position**
 - Eye position: `Point3D eye`

- **Orientation**
 - View direction: `Vector3D view`
 - Up direction: `Vector3D up`

- **Aperture**
 - Field of view angle: `float xFov, yFov`
 - Resolution of film plane: `int width, height`
 - Distance of film plane
 - (Orientation of film plane)
Other Models: Depth of Field

Close Focused

Distance Focused

P. Haeberli
Other Models: Motion Blur

- Mimics effect of open camera shutter
- Gives perceptual effect of high-speed motion
- Generally involves temporal super-sampling

Brostow & Essa
Traditional Pinhole Camera

- The film sits behind the pinhole of the camera.
- Rays come in from the outside, pass through the pinhole, and hit the film plane.
Traditional Pinhole Camera

- The film sits behind the pinhole of the camera.
- Rays come in from the outside, pass through the pinhole, and hit the film plane.

Photograph is upside down
Virtual Camera

• The film sits in front of the pinhole of the camera.

• Rays come in from the outside, pass through the film plane, and hit the pinhole.
Virtual Camera

- The film sits in front of the pinhole of the camera.
- Rays come in from the outside, pass through the film plane, and hit the pinhole.

Photograph is right side up
Overview

• 3D scene representation
• 3D viewer representation

• Ray Casting
 ○ Where are we looking?
 ○ What do we see?
 ○ How does it look?
Ray Casting

• For each sample …
 ○ **Where**: Construct ray from eye through view plane
 ○ **What**: Find *first* surface intersected by ray through pixel
 ○ **How**: Compute color sample based on surface radiance
Ray Casting

• Simple implementation:

```java
Image RayCast( Camera camera, Scene scene, int width, int height) {
    Image image = new Image( width, height);
    for( int i=0; i<width; i++ ) for( int j=0; j<height; j++ ) {
        Ray ray = ConstructRayThroughPixel( camera, i, j);
        Intersection hit = FindIntersection( ray, scene);
        image[i][j] = GetColor( hit);
    }
    return image;
}
```
Ray Casting

Where?

Image RayCast(Camera camera , Scene scene , int width , int height) {
 Image image = new Image(width , height);
 for(int i=0 ; i<width ; i++) for(int j=0 ; j<height ; j++) {
 Ray ray = ConstructRayThroughPixel(camera , i , j);
 Intersection hit = FindIntersection(ray , scene);
 image[i][j] = GetColor(hit);
 }
 return image;
}
Constructing a Ray Through a Pixel

\[\vec{p}_0 \]

Up direction

View Plane

back

towards

right

\[p[i][j] \]
Constructing a Ray Through a Pixel

The ray originates at \(p_0 \) (the position of the camera). So the equation for the ray is:
\[
\text{Ray}(t) = p_0 + t \cdot \vec{v}
\]
If the ray passes through the point $p[i][j]$, then the solution for \mathbf{v} is:

$$\mathbf{v} = \frac{p[i][j] - p_0}{\|p[i][j] - p_0\|}$$
If $p[i][j]$ represents the (i, j)-th pixel of the image, what is its position?
Constructing Ray Through a Pixel

- 2D Example: Side view of camera at p_0
 - Where is the i-th pixel, $p[i]$? ($i \in [0, \text{height})$)

θ = field of view angle (given)

d = distance to view plane (arbitrary = you pick)
Constructing Ray Through a Pixel

- 2D Example: Side view of camera at p_0
 - Where is the i-th pixel, $p[i]$? ($i \in [0, \text{height})$)

$\theta =$ field of view angle (given)
$d =$ distance to view plane (arbitrary = you pick)

$$p_1 = p_0 + d \cdot \text{towards} - d \cdot \tan \frac{\theta}{2} \cdot \text{up}$$
$$p_2 = p_0 + d \cdot \text{towards} + d \cdot \tan \frac{\theta}{2} \cdot \text{up}$$
Constructing Ray Through a Pixel

• 2D Example: Side view of camera at p_0
 ◦ Where is the i-th pixel, $p[i]$? ($i \in [0, \text{height})$)

$\theta = \text{field of view angle (given)}$
$d = \text{distance to view plane (arbitrary = you pick)}$

$$p_1 = p_0 + d \cdot \text{towards} - d \cdot \tan \frac{\theta}{2} \cdot \text{up}$$
$$p_2 = p_0 + d \cdot \text{towards} + d \cdot \tan \frac{\theta}{2} \cdot \text{up}$$

$$p[i] = p_1 + \left(\frac{i + 0.5}{\text{height}} \right) \cdot (p_2 - p_1)$$
Constructing Ray Through a Pixel

• 2D Example:

The ray passing through the i-th pixel is defined by:

$$\text{Ray}(t) = p_0 + t \cdot \hat{v}$$

- p_0: camera position
- \hat{v}: direction to the i-th pixel:
 $$\hat{v} = \frac{p[i] - p_0}{\|p[i] - p_0\|}$$
- $p[i]$: i-th pixel location:
 $$p[i] = p_1 + \left(\frac{i + 0.5}{\text{height}}\right) \cdot (p_2 - p_1)$$

- p_1 and p_2 are the endpoints of the view plane:
 $$p_1 = p_0 + d \cdot \text{towards} - d \cdot \tan \theta/2 \cdot \text{up}$$
 $$p_2 = p_0 + d \cdot \text{towards} + d \cdot \tan \theta/2 \cdot \text{up}$$
Constructing Ray Through a Pixel

Figuring out how to do this in 3D is assignment 2

Note:

- Given the vertical field of view angle, θ_v
Constructing Ray Through a Pixel

Figuring out how to do this in 3D is assignment 2

Note:

- Given the vertical field of view angle, θ_v
- And the aspect ratio, $ar = \frac{height}{width}$
Constructing Ray Through a Pixel

Figuring out how to do this in 3D is assignment 2

Note:

- Given the vertical field of view angle, θ_v
- And the aspect ratio, $ar = \frac{height}{width}$

The horizontal field of view angle, θ_h, satisfies:

$$\frac{\sin(\theta_v/2)}{\sin(\theta_h/2)} = ar$$
Ray Casting

Where?

Image RayCast(Camera camera , Scene scene , int width , int height)
{
 Image image = new Image(width , height);
 for(int i=0 ; i<width ; i++) for(int j=0 ; j<height ; j++)
 {
 Ray ray = ConstructRayThroughPixel(camera , i , j);
 Intersection hit = FindIntersection(ray , scene);
 image[i][j] = GetColor(hit);
 }
 return image;
}
Ray Casting

What?

Image RayCast(Camera camera , Scene scene , int width , int height)
{
 Image image = new Image(width , height);
 for(int i=0 ; i<width ; i++) for(int j=0 ; j<height ; j++)
 {
 Ray ray = ConstructRayThroughPixel(camera , i , j);
 Intersection hit = FindIntersection(ray , scene);
 image[i][j] = GetColor(hit);
 }
 return image;
}
Ray-Scene Intersection

• Intersections with geometric primitives
 ◦ Sphere
 ◦ Triangle
Ray-Sphere Intersection

Ray: $p(t) = p_0 + t \cdot \vec{v}$, \hspace{1em} (0 \leq t < \infty)

Sphere: $\Phi(p) = \|p - c\|^2 - r^2 = 0$
Ray-Sphere Intersection

Ray: \(p(t) = p_0 + t \cdot \vec{v}, \quad (0 \leq t < \infty) \)

Sphere: \(\Phi(p) = \|p - c\|^2 - r^2 = 0 \)

Substituting for \(p \), we get:
\[
\Phi(t) = \|p_0 - t \cdot \vec{v} - c\|^2 - r^2 = 0
\]

Solve quadratic equation:
\[
a \cdot t^2 + b \cdot t + c = 0
\]
where:
\[
a = 1 \\
b = 2\langle \vec{v}, p_0 - c \rangle \\
c = \|p_0 - c\|^2 - r^2
\]
Ray-Sphere Intersection

Ray: $p(t) = p_0 + t \cdot \vec{v}$, \hspace{1cm} (0 \leq t < \infty)

Sphere: $\Phi(p) = ||p - c||^2 - r^2 = 0$

Substituting for p, we get:
$\Phi(t) = ||p_0 - t \cdot \vec{v} - c||^2 - r^2 = 0$

Solve quadratic equation:
$a \cdot t^2 + b \cdot t + c = 0$

where:

$\Phi(t) = ||p_{0} - t \cdot \vec{v} - c||^2 - r^2 = 0$

Generally, there are two solutions to the quadratic equation, giving two points of intersection, p and p'. Want to return the first positive hit.
Ray-Sphere Intersection

- Need normal vector at intersection for lighting calculations:

\[
\vec{n} = \frac{p - c}{\|p - c\|}
\]
Ray-Sphere Intersection

• More generally, if the shape is given as the set of points \(p \) satisfying:

\[
\Phi(p) = 0
\]

for some function \(\Phi : \mathbb{R}^3 \to \mathbb{R} \), then the normal of the surface will be parallel to the gradient.
Ray-Scene Intersection

- Intersections with geometric primitives
 - Sphere
 - Triangle
Ray-Triangle Intersection

1. Intersect ray with plane
2. Check if the point is inside the triangle
Ray-Plane Intersection

Ray: \(p(t) = p_0 + t \cdot \vec{v}, \ (0 \leq t < \infty) \)

Plane: \(\Phi(p) = \langle p, \vec{n} \rangle - d = 0 \)

Substituting for \(p \), we get:
\[\Phi(t) = \langle p_0 + t \cdot \vec{v}, \vec{n} \rangle - d = 0 \]

Solution:
\[t = -\frac{\langle p_0, \vec{n} \rangle - d}{\langle \vec{v}, \vec{n} \rangle} \]

What are the implications of \(\langle \vec{v}, \vec{n} \rangle = 0 \)?
Ray-Triangle Intersection I

- Check for point-triangle intersection algebraically:
 - Generate planes through the ray source and each edge
 - Check if the point of intersection is above each of these planes

For each edge:

\[\vec{n}_i = (v_{i+1} - p_0) \times (v_i - p_0) \]

if \(\langle p - p_0, \vec{n}_i \rangle < 0 \)
return FALSE;
Ray-Triangle Intersection II

- Check for point-triangle intersection parametrically

In general, given $p \in \mathbb{R}^3$ and given three points $\{v_1, v_2, v_3\} \subset \mathbb{R}^3$ (in general position) we can solve for $\alpha, \beta, \gamma \in \mathbb{R}$ such that:

$$p = \alpha v_1 + \beta v_2 + \gamma v_3$$

p is in the plane spanned by $\{v_1, v_2, v_3\}$ iff.:

$$\alpha + \beta + \gamma = 1$$

p is inside the triangle with vertices $\{v_1, v_2, v_3\}$ iff.:

$$\alpha, \beta, \gamma \geq 0$$
Ray-Triangle Intersection II

- Check for point-triangle intersection parametrically

In general, given $p \in \mathbb{R}^3$ and given three points $\{v_1, v_2, v_3\} \subset \mathbb{R}^3$ (in general position) we can solve for $\alpha, \beta, \gamma \in \mathbb{R}$ such that:

$$p = \alpha v_1 + \beta v_2 + \gamma v_3$$

To get α, β, γ, solve the system:

$$
\begin{pmatrix}
 v_1^x & v_2^x & v_3^x \\
 v_1^y & v_2^y & v_3^y \\
 v_1^z & v_2^z & v_3^z
\end{pmatrix}
\begin{pmatrix}
 \alpha \\
 \beta \\
 \gamma
\end{pmatrix}
=
\begin{pmatrix}
 p^x \\
 p^y \\
 p^z
\end{pmatrix}
$$
Ray-Triangle Intersection II

- Check for point-triangle intersection parametrically

In general, given \(p \in \mathbb{R}^3 \) and given three points \(\{v_1, v_2, v_3\} \subset \mathbb{R}^3 \) (in general position) we can solve for \(\alpha, \beta, \gamma \in \mathbb{R} \) such that:

\[
p = \alpha v_1 + \beta v_2 + \gamma v_3
\]

To get \(\alpha, \beta, \gamma \), solve the system:

\[
\begin{bmatrix}
v_1^x & v_2^x & v_3^x \\
v_1^y & v_2^y & v_3^y \\
v_1^z & v_2^z & v_3^z
\end{bmatrix}\begin{bmatrix}
\alpha \\
\beta \\
\gamma
\end{bmatrix} = \begin{bmatrix}
p^x \\
p^y \\
p^z
\end{bmatrix}
\]

\(\iff\)

\[
\begin{bmatrix}
\alpha \\
\beta \\
\gamma
\end{bmatrix} = \begin{bmatrix}
v_1^x & v_2^x & v_3^x \\
v_1^y & v_2^y & v_3^y \\
v_1^z & v_2^z & v_3^z
\end{bmatrix}^{-1}\begin{bmatrix}
p^x \\
p^y \\
p^z
\end{bmatrix}
\]
Ray-Triangle Intersection II

- Check for point-triangle intersection parametrically

In general, given \(p \in \mathbb{R}^3 \) and given three points \(\{v_1, v_2, v_3\} \subset \mathbb{R}^3 \) (in general position) we can solve for \(\alpha, \beta, \gamma \in \mathbb{R} \) such that:

\[
p = \alpha v_1 + \beta v_2 + \gamma v_3
\]

This will fail if the vertices \(\{v_1, v_2, v_3\} \) lie in a plane through the origin.

To get \(\alpha, \beta, \gamma \), solve the system:

\[
\begin{pmatrix}
v_1^x & v_2^x & v_3^x \\
v_1^y & v_2^y & v_3^y \\
v_1^z & v_2^z & v_3^z
\end{pmatrix}
\begin{pmatrix}
\alpha \\
\beta \\
\gamma
\end{pmatrix}
=
\begin{pmatrix}
p_x \\
p_y \\
p_z
\end{pmatrix}
\iff
\begin{pmatrix}
\alpha \\
\beta \\
\gamma
\end{pmatrix} =
\begin{pmatrix}
v_1^x & v_2^x & v_3^x \\
v_1^y & v_2^y & v_3^y \\
v_1^z & v_2^z & v_3^z
\end{pmatrix}^{-1}
\begin{pmatrix}
p_x \\
p_y \\
p_z
\end{pmatrix}
Ray-Triangle Intersection II

• Check for point-triangle intersection parametrically

Embrace the problem case by translating the whole system to the origin:

\[
\begin{pmatrix}
 v_1^x & v_2^x & v_3^x \\
 v_1^y & v_2^y & v_3^y \\
 v_1^z & v_2^z & v_3^z
\end{pmatrix}
\begin{pmatrix}
 \alpha \\
 \beta \\
 \gamma
\end{pmatrix}
= \begin{pmatrix}
 p^x \\
 p^y \\
 p^z
\end{pmatrix}
\]

\[
\begin{pmatrix}
 0 & v_2^x - v_1^x & v_3^x - v_1^x \\
 0 & v_2^y - v_1^y & v_3^y - v_1^y \\
 0 & v_2^z - v_1^z & v_3^z - v_1^z
\end{pmatrix}
\begin{pmatrix}
 \alpha \\
 \beta \\
 \gamma
\end{pmatrix}
= \begin{pmatrix}
 p^x \\
 p^y \\
 p^z
\end{pmatrix}
\]
Ray-Triangle Intersection II

• Check for point-triangle intersection parametrically

Embrace the problem case by translating the whole system to the origin:

\[
\begin{pmatrix}
 v_1^x & v_2^x & v_3^x \\
 v_1^y & v_2^y & v_3^y \\
 v_1^z & v_2^z & v_3^z
\end{pmatrix}
\begin{pmatrix}
 \alpha \\
 \beta \\
 \gamma
\end{pmatrix}
=
\begin{pmatrix}
 p^x \\
 p^y \\
 p^z
\end{pmatrix}
\]

\[
\begin{pmatrix}
 v_2^x - v_1^x & v_3^x - v_1^x \\
 v_2^y - v_1^y & v_3^y - v_1^y \\
 v_2^z - v_1^z & v_3^z - v_1^z
\end{pmatrix}
\begin{pmatrix}
 \beta \\
 \gamma
\end{pmatrix}
=
\begin{pmatrix}
 p^x - v_1^x \\
 p^y - v_1^y \\
 p^z - v_1^z
\end{pmatrix}
\]
Ray-Triangle Intersection II

- Check for point-triangle intersection parametrically

Embrace the problem case by translating the whole system to the origin:

\[\mathbf{p} - \mathbf{v}_1 = \mathbf{v}_2 - \mathbf{v}_1 \]
\[\mathbf{v}_3 - \mathbf{v}_1 \]

This is an over-constrained system!
In general, we can’t express a 3D point as the linear combination of two 3D points.

This is not the general case!
A solution exists since \(p \) is in the plane spanned by \(\{v_1, v_2, v_3\} \)

After solving for \(\beta \) and \(\gamma \), we can set:
\[\alpha = 1 - \beta - \gamma \]

\[
\begin{pmatrix}
 v_1^x & v_2^x & v_3^x \\
 v_1^y & v_2^y & v_3^y \\
 v_1^z & v_2^z & v_3^z
\end{pmatrix}
\begin{pmatrix}
 \alpha \\
 \beta \\
 \gamma
\end{pmatrix} =
\begin{pmatrix}
 p^x \\
 p^y \\
 p^z
\end{pmatrix}
\]

\[
\begin{pmatrix}
 v_2^x - v_1^x & v_3^x - v_1^x \\
 v_2^y - v_1^y & v_3^y - v_1^y \\
 v_2^z - v_1^z & v_3^z - v_1^z
\end{pmatrix}
\begin{pmatrix}
 \beta \\
 \gamma
\end{pmatrix} =
\begin{pmatrix}
 p^x \\
 p^y \\
 p^z
\end{pmatrix}
\]
Other Ray-Primitive Intersections

• Cone, cylinder, ellipsoid:
 ◦ Similar to sphere

• Box
 ◦ Intersect 3 front-facing planes, return closest

• Convex polygon
 » Find the intersection of the ray with the plane
 » Check that the intersection is above every triangle generated by the ray source and polygon edge.

• Concave polygon
 ◦ Same plane intersection
 ◦ More complex point-in-polygon test