Image Processing, Warping, and Compositing

Michael Kazhdan

(601.457/657)

HB Ch. 4.8
FvDFH Ch. 14.10
Announcements

• Piazza pole re second exam
Outline

• Image Processing
• Image Warping
• Image Compositing
Image Processing

• What about the case when the modification that we would like to make to a pixel depends on the pixels around it?
 ◦ Blurring
 ◦ Edge Detection
 ◦ Etc.
Multi-Pixel Operations

Stationary/Local Filtering

• In the simplest case, we define a *mask* of weights telling us how values at adjacent pixels should be combined to generate the new value.
Blurring

- To blur across pixels, define a mask:
 - Whose values are non-negative
 - Whose value is larger near the center of the mask
 - Whose entries sum to one.

Original

Blur

Filter = \[
\begin{bmatrix}
\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\
\frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\
\frac{1}{16} & \frac{2}{16} & \frac{1}{16}
\end{bmatrix}
\]
Blurring

Pixel(x,y): red = 36
 green = 36
 blue = 0

Filter = \[
\begin{bmatrix}
\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\
\frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\
\frac{1}{16} & \frac{2}{16} & \frac{1}{16}
\end{bmatrix}
\]
Blurring

<table>
<thead>
<tr>
<th></th>
<th>X - 1</th>
<th>X</th>
<th>X + 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y - 1</td>
<td>36</td>
<td>109</td>
<td>146</td>
</tr>
<tr>
<td>Y</td>
<td>32</td>
<td>36</td>
<td>109</td>
</tr>
<tr>
<td>Y + 1</td>
<td>32</td>
<td>36</td>
<td>73</td>
</tr>
</tbody>
</table>

Pixel(x,y): red = 36
green = 36
blue = 0

Pixel(x,y).red and its red neighbors

Filter = \[
\begin{bmatrix}
\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\
\frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\
\frac{1}{16} & \frac{2}{16} & \frac{1}{16}
\end{bmatrix}
\]
Blurring

Original

Pixel(x,y).red and its red neighbors

New value for Pixel(x,y).red =

\[
\begin{align*}
(36 \times \frac{1}{16}) & + (109 \times \frac{2}{16}) & + (146 \times \frac{1}{16}) \\
(32 \times \frac{2}{16}) & + (36 \times \frac{4}{16}) & + (109 \times \frac{2}{16}) \\
(32 \times \frac{1}{16}) & + (36 \times \frac{2}{16}) & + (73 \times \frac{1}{16})
\end{align*}
\]

Filter =

\[
\begin{bmatrix}
\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\
\frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\
\frac{1}{16} & \frac{2}{16} & \frac{1}{16}
\end{bmatrix}
\]
Blurring

New value for Pixel(x,y).red = 62.69

Pixel(x,y).red and its red neighbors

Filter = \[
\begin{bmatrix}
\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\
\frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\
\frac{1}{16} & \frac{2}{16} & \frac{1}{16}
\end{bmatrix}
\]
Blurring

New value for Pixel(x,y).red = 63

Original

Blur

\[
\begin{bmatrix}
\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\
\frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\
\frac{1}{16} & \frac{2}{16} & \frac{1}{16}
\end{bmatrix}
\]
Blurring

- Repeat for each pixel and each color channel.
- Keep source and destination separate to avoid “drift”.
- For boundary pixels, not all neighbors are used.
 Need to normalize the mask so that the sum of the values is correct.
Blurring

- In general, the mask can have arbitrary size:
 - We can express a smaller mask as a bigger one by padding with zeros.

\[
\begin{bmatrix}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1 \\
\end{bmatrix} / 16
\]

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 \\
0 & 2 & 4 & 2 & 0 \\
0 & 1 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix} / 16
\]

Original | Narrow Blur
Blurring

- In general, the mask can have arbitrary size:
 - We can have more non-zero entries to give rise to a wider blur.

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 \\
0 & 2 & 4 & 2 & 0 \\
0 & 1 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & 1 & 2 & 1 & 0 \\
1 & 2 & 4 & 2 & 1 \\
2 & 4 & 8 & 4 & 2 \\
1 & 2 & 4 & 2 & 1 \\
0 & 1 & 2 & 1 & 0
\end{bmatrix}
\] /16

\[
\begin{bmatrix}
0 & 1 & 2 & 1 & 0 \\
1 & 2 & 4 & 2 & 1 \\
2 & 4 & 8 & 4 & 2 \\
1 & 2 & 4 & 2 & 1 \\
0 & 1 & 2 & 1 & 0
\end{bmatrix}
\] /48

Original Narrow Blur Wide Blur
Blurring

• A general way for defining the entries of an $n \times n$ mask is to use the values of a Gaussian:

\[
\text{GaussianMask}[i][j] = e^{-\frac{d_i^2 + d_j^2}{2\sigma^2}}
\]

- σ equals the mask radius ($n/2$ for an $n \times n$ mask)
- d_i is i’s horizontal distance from the center pixel
- d_j is j’s vertical distance from the center pixel
- Don’t forget to normalize!
Edge Detection

- An edge is a point in the image where the image is “far” from constant.
Edge Detection

• To find the edges in an image, define a mask:
 ◦ whose value is largest at the center pixel, and
 ◦ whose entries sum to zero.

• Edge pixels are those whose value is larger (on average) than those of its neighbors.

Original

Detected Edges

Filter = \(\frac{1}{8} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix} \)
Edge Detection

Pixel(x,y): red = 36
 green = 36
 blue = 0

Filter = $\frac{1}{8} \begin{bmatrix}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1 \\
\end{bmatrix}$
Edge Detection

Pixel\((x,y)\): red = 36
green = 36
blue = 0

<table>
<thead>
<tr>
<th>(X - 1)</th>
<th>(X)</th>
<th>(X + 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Y - 1)</td>
<td>36</td>
<td>109</td>
</tr>
<tr>
<td>(Y)</td>
<td>32</td>
<td>36</td>
</tr>
<tr>
<td>(Y + 1)</td>
<td>32</td>
<td>36</td>
</tr>
</tbody>
</table>

Pixel\((x,y)\).red and its red neighbors

Filter = \(\frac{1}{8} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix} \)
Edge Detection

Original Image

- **Pixel** \((x,y)\).red and its red neighbors:

<table>
<thead>
<tr>
<th>Y-1</th>
<th>36</th>
<th>109</th>
<th>146</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>32</td>
<td>36</td>
<td>109</td>
</tr>
<tr>
<td>Y+1</td>
<td>32</td>
<td>36</td>
<td>73</td>
</tr>
</tbody>
</table>

New Value for Pixel \((x,y)\).red

\[
\text{New value for Pixel}(x,y)\text{.red} = \left(36 \times \frac{-1}{8}\right) + \left(109 \times \frac{-1}{8}\right) + \left(146 \times \frac{-1}{8}\right) + \left(32 \times \frac{-1}{8}\right) + \left(36 \times \frac{1}{1}\right) + \left(109 \times \frac{-1}{8}\right) + \left(32 \times \frac{-1}{8}\right) + \left(36 \times \frac{-1}{8}\right) + \left(73 \times \frac{-1}{8}\right)
\]

Filter

\[
\text{Filter} = \frac{1}{8} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}
\]
Edge Detection

New value for Pixel(x,y).red = -285/8

Pixel(x,y).red and its red neighbors

<table>
<thead>
<tr>
<th>Y-1</th>
<th>X-1</th>
<th>X</th>
<th>X+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>109</td>
<td>146</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>32</td>
<td>36</td>
<td>109</td>
</tr>
<tr>
<td>Y+1</td>
<td>32</td>
<td>36</td>
<td>73</td>
</tr>
</tbody>
</table>

Filter = $\frac{1}{8} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$
Edge Detection

Original

New value for Pixel(x,y).red = 0

Pixel(x,y).red and its red neighbors

Filter = \(\frac{1}{8} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix} \)
Edge Detection

New value for Pixel(x,y).red = 0

Filter = $\frac{1}{8} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$

Note: Edge values are not colors, so we have to rescale/remap for visualization.
Outline

• Image Processing
• Image Warping
• Image Sampling
Image Warping

• Move pixels of image
 ◦ Mapping
 ◦ Resampling

Source image Warp Destination image
Overview

• Mapping
 ○ Forward
 ○ Inverse

• Resampling
 ○ Point sampling
 ○ Triangle filter
 ○ Gaussian filter
Mapping

- Define transformation
 - Describe the destination \((x, y) = \Phi(u, v)\) for every location \((u, v)\) in the source
Example Mappings

- Scale by σ:
 - $\Phi(u, v) = (\sigma u, \sigma v)$

Scale $\sigma = 0.8$
Example Mappings

• Rotate by θ degrees:
 \[\Phi(u, v) = (u \cos \theta - v \sin \theta, u \sin \theta + v \cos \theta) \]
Example Mappings

- Shear in x by σ_x:
 - $\Phi(u, v) = (u + \sigma_x \cdot v, v)$

- Shear in y by σ_y:
 - $\Phi(u, v) = (u, v + \sigma_y \cdot u)$
Other Mappings

- Any function of u and v:
 - $\Phi(u, v) = \ldots$

Fish-eye

“Swirl”

“Rain”
Image Warping Implementation I

- Forward mapping:

\[
\text{for (} v = 0 \text{ ; } v < v_{\text{max}} \text{ ; } v++ \text{)}
\]
\[
\text{for (} u = 0 \text{ ; } u < u_{\text{max}} \text{ ; } u++ \text{)}
\]
\[
(x, y) = \Phi(u, v);
\]
\[
dst(x, y) = src(u, v);
\]
Forward Mapping

- Iterate over source image
Forward Mapping – BAD!

- Iterate over source image

Multiple source pixels can map to same destination pixel
Forward Mapping – BAD!

- Iterate over source image

Multiple source pixels can map to same destination pixel

Some destination pixels may not be covered

Rotate + Translate

$u \to v \to x \to y$
Image Warping Implementation II

• Inverse mapping:

\[
\begin{align*}
&\text{for}(y = 0 ; y < y_{\text{max}} ; y++) \\
&\quad \text{for}(x = 0 ; x < x_{\text{max}} ; x++) \\
&\quad (u, v) = \Phi^{-1}(x, y); \\
&\quad \text{dst}(x, y) = \text{src}(u, v);
\end{align*}
\]
Reverse Mapping – GOOD!

- Iterate over destination image
 - Must resample source
 - May oversample, but much simpler!

Rotate -30 + Translate
Resampling

- Evaluate source image at arbitrary \((u, v)\)

\((u, v)\) does not usually have integer coordinates
Overview

• Mapping
 ◦ Forward
 ◦ Inverse

• Resampling
 ◦ Nearest Point Sampling
 ◦ Bilinear Sampling
 ◦ Gaussian Sampling
Nearest Point Sampling

• Take value at closest pixel:

\[
\text{int } iu = \text{floor}(u+0.5); \\
\text{int } iv = \text{floor}(v+0.5); \\
\text{dst}(x,y) = \text{src}(iu,iv);
\]
Bilinear Sampling

- Bilinearly interpolate four closest source pixels

\[\text{dst}(x, y) = \text{Weighted average of source at } (u_1, v_1), (u_2, v_1), (u_1, v_2), \text{ and } (u_2, v_2) \]
Linear Sampling

- Linearly interpolate two closest source pixels
 \[\text{dst}(x) = \text{linear interpolation of } u_1 \text{ and } u_2 \]

\[u_1 = \text{floor}(u) \]
\[u_2 = u_1 + 1; \]
\[du = u - u_1; \]
\[\text{dst}(x) = \text{src}(u_1) \times (1 - du) + \text{src}(u_2) \times du; \]
Bilinear Sampling

• Bilinearly interpolate four closest source pixels

\[a = \text{linear interpolation of} \ src(u_1, v_1) \ \text{and} \ src(u_2, v_1) \]
\[b = \text{linear interpolation of} \ src(u_1, v_2) \ \text{and} \ src(u_2, v_2) \]
\[\text{dst}(x, y) = \text{linear interpolation of} \ a \ \text{and} \ b \]

\[u_1 = \text{floor}(u), \ u_2 = u_1 + 1; \]
\[v_1 = \text{floor}(v), \ v_2 = v_1 + 1; \]
\[d_u = u - u_1; \]
\[a = src(u_1, v_1) * (1-d_u) \]
\[\quad + src(u_2, v_1) * (d_u); \]
\[b = src(u_1, v_2) * (1-d_u) \]
\[\quad + src(u_2, v_2) * d_u; \]
\[d_v = v - v_1; \]
\[\text{dst}(x, y) = a * (1-d_v) + b * d_v; \]
Bilinear Sampling

- Bilinearly interpolate four closest source pixels

\[a = \text{linear interpolation of } \text{src}(u_1, v_1) \text{ and } \text{src}(u_2, v_1) \]
\[b = \text{linear interpolation of } \text{src}(u_1, v_2) \text{ and } \text{src}(u_2, v_2) \]
\[\text{dst}(x, y) = \text{linear interpolation of } a \text{ and } b \]

\[u_1 = \text{floor}(u) \quad , \quad u_2 = u_1 + 1; \]
\[v_1 = \text{floor}(v) \quad , \quad v_2 = v_1 + 1; \]
\[d_u = u - u_1; \]
\[a = \text{src}(u_1,v_1) \times (1-d_u) \]
\[\quad + \text{src}(u_2,v_1) \times d_u; \]
\[b = \text{src}(u_1,v_2) \times (1-d_u) \]
\[\quad + \text{src}(u_2,v_2) \times d_u; \]
\[d_v = v - v_1; \]
\[\text{dst}(x, y) = a \times (1-d_v) + b \times d_v; \]

Make sure to test that the pixels \((u_1, v_1), (u_2, v_2), (u_1, v_2), \) and \((u_2, v_1)\) are within the image.
Gaussian Sampling

• Compute weighted sum of pixel neighborhood:
 ○ The blending weights are the normalized values of a Gaussian function.
Filtering Methods Comparison

- Trade-offs
 - Jagged edges versus blurring
 - Computation speed

- Nearest
- Bilinear
- Gaussian
Image Warping Implementation

- Inverse mapping:

```
for( y=0 ; y<y_max ; y++ )
    for( x=0 ; x<x_max ; x++ )
        (u,v) = \Phi^{-1}(x,y);
        dst(x,y) = resample_src(u,v,w);
```
Image Warping Implementation

- Inverse mapping:

 \[
 \text{for } (y = 0 ; y < y_{\text{max}} ; y++) \\
 \quad \text{for } (x = 0 ; x < x_{\text{max}} ; x++) \\
 \quad \quad (u, v) = \Phi^{-1}(x, y) \\
 \quad \quad \text{dst}(x, y) = \text{resample}_{\text{src}}(u, v, w) \\
 \]
Example: Scale

Scale(src, dst, σ):

$w \approx ?$;

for(y=0 ; y<ymax ; y++)
 for(x=0 ; x<xmax ; x++)
 $(u,v) = (x,y) / \sigma$;
 dst(x,y) = resample_src(u,v,w);

$w = \frac{1}{\sigma}$
Example: Rotate

\(\text{Rotate}(\text{src}, \text{dst}, \theta) : \)

\[
\begin{align*}
w & \equiv ?; \\
\text{for}(\ y=0 \ ; \ y<\text{ymax} \ ; \ y++) & \\
\ & \quad \text{for}(\ x=0 \ ; \ x<\text{xmax} \ ; \ x++) \\
\ & \quad \ (u,v) = (\ x \cdot \cos(-\theta) - y \cdot \sin(-\theta), \\
\ & \quad \quad \quad \ x \cdot \sin(-\theta) + y \cdot \cos(-\theta)); \\
\text{dst}(x,y) & = \text{resample} _\text{src}(u,v,w); \\
\ & \quad \ w = 1
\end{align*}
\]

\[
\begin{align*}
x & = u \cos \theta - v \sin \theta \\
y & = u \sin \theta + v \cos \theta
\end{align*}
\]
Example: Fun

Fun(src, dst, θ):

\[w \equiv ?; \]
\[\text{for}(\ y=0 \ ; \ y<y_{\text{max}} \ ; \ y++ \) \]
\[\quad \text{for}(x=0 \ ; \ x<x_{\text{max}} \ ; \ x++ \) \]
\[\quad (u,v) = \text{fun}(x,y); \]
\[\quad \text{dst}(x,y) = \text{resample}_{\text{src}}(u,v,w); \]
Sampling Questions

Q: Inverse mapping requires sampling the source image. Which sampling method should we use:

- Nearest Point Sampling?
- Bilinear Sampling?
- Gaussian Sampling?
- Something Else?
Outline

• Image Processing
• Image Warping

• Image Compositing
 ◦ Blue-screen mattes
 ◦ Alpha channel
Image Compositing

• Separate an image into “elements”
 ◦ Render independently
 ◦ Composite together

• Applications
 ◦ Cel animation
 ◦ Blue-screen matting

Bill makes ends meet by going into film
Blue-Screen Matting

- Composite foreground and background images
 - Create background image
 - Create foreground image with blue background
 - Insert non-blue foreground pixels into background
Blue-Screen Matting

• Composite foreground and background images
 ○ Create background image
 ○ Create foreground image with blue background
 ○ Insert non-blue foreground pixels into a blue background

Problem: lack of partial coverage results in a haloing effect along the boundary!
Alpha Channel

- Encodes pixel coverage information
 - $\alpha = 0$: no coverage (or transparent)
 - $\alpha = 1$: full coverage (or opaque)
 - $0 < \alpha < 1$: partial coverage (or semi-transparent)

- Single Pixel Example: $\alpha = 0.3$

![Partial Coverage](image1)

<table>
<thead>
<tr>
<th>or</th>
</tr>
</thead>
</table>

![Semi-Transparent](image2)
Compositing with Alpha

Controls the blending of foreground and background pixels when elements are composited.

\[\alpha = 1 \]

\[0 < \alpha < 1 \]

\[\alpha = 0 \]
Semi-Transparent Objects

Typically, we represent RGBA colors as not pre-multiplied by the α value.
Semi-Transparent Objects

Typically, we represent RGBA colors as not pre-multiplied by the α value.

Pixel $A = (C_A, \alpha_A)$:
Semi-Transparent Objects

Typically, we represent RGBA colors as not pre-multiplied by the α value.

Pixel $A = (C_A, \alpha_A)$:

- Opacity of A is α_A
Semi-Transparent Objects

Typically, we represent RGBA colors as not pre-multiplied by the α value.

Pixel $A = (C_A, \alpha_A)$:

- Opacity of A is α_A
- Transparency of A is $1 - \alpha_A$
Semi-Transparent Objects

Typically, we represent RGBA colors as not pre-multiplied by the α value.

Pixel $A = (C_A, \alpha_A)$:
- Opacity of A is α_A
- Transparency of A is $1 - \alpha_A$
- Apparent color of A is $C_A\alpha_A$
Semi-Transparent Objects

Typically, we represent RGBA colors as not pre-multiplied by the α value.

If we place pixel A over pixel B, what is the resulting pixel value?

\[
\begin{align*}
\alpha_A & \quad (1 - \alpha_A) \\
C_A & \quad A \\
\begin{array}{c}
\alpha_B \\
\end{array} \\
C_B & \quad B \\
\end{align*}
\]
Semi-Transparent Objects

Pixel $A = (C_A, \alpha_A)$ over $B = (C_B, \alpha_B)$:
Semi-Transparent Objects

Pixel $A = (C_A, \alpha_A)$ over $B = (C_B, \alpha_B)$:

- Opacity of A in $(A$ over $B)$ is α_A
Semi-Transparent Objects

Pixel $A = (C_A, \alpha_A)$ over $B = (C_B, \alpha_B)$:

- Opacity of A in $(A$ over $B)$ is α_A
- Apparent color of A in $(A$ over $B)$ is $C_A \alpha_A$
Semi-Transparent Objects

Pixel $A = (C_A, \alpha_A)$ over $B = (C_B, \alpha_B)$:

- Opacity of A in $(A$ over $B)$ is α_A
- Apparent color of A in $(A$ over $B)$ is $C_A \alpha_A$
- Opacity of B in $(A$ over $B)$ is $(1 - \alpha_A) \alpha_B$
Semi-Transparent Objects

Pixel $A = (C_A, \alpha_A)$ over $B = (C_B, \alpha_B)$:

- Opacity of A in $(A$ over $B)$ is α_A
- Apparent color of A in $(A$ over $B)$ is $C_A\alpha_A$
- Opacity of B in $(A$ over $B)$ is $(1 - \alpha_A)\alpha_B$
- Apparent color of B in $(A$ over $B)$ is $C_B(1 - \alpha_A)\alpha_B$
Semi-Transparent Objects

Pixel $A = (C_A, \alpha_A)$ over $B = (C_B, \alpha_B)$:

- Opacity of A in $(A$ over $B)$ is α_A
- Apparent color of A in $(A$ over $B)$ is $C_A \alpha_A$
- Opacity of B in $(A$ over $B)$ is $(1 - \alpha_A) \alpha_B$
- Apparent color of B in $(A$ over $B)$ is $C_B (1 - \alpha_A) \alpha_B$
- Opacity of $(A$ over $B)$ is $\alpha_A + (1 - \alpha_A) \alpha_B$
Semi-Transparent Objects

Pixel $A = (C_A, \alpha_A)$ over $B = (C_B, \alpha_B)$:

- Opacity of A in $(A \text{ over } B)$ is α_A
- Apparent color of A in $(A \text{ over } B)$ is $C_A \alpha_A$
- Opacity of B in $(A \text{ over } B)$ is $(1 - \alpha_A)\alpha_B$
- Apparent color of B in $(A \text{ over } B)$ is $C_B (1 - \alpha_A)\alpha_B$
- Opacity of $(A \text{ over } B)$ is $\alpha_A + (1 - \alpha_A)\alpha_B$
- Apparent color of $(A \text{ over } B)$ is $C_A \alpha_A + C_B (1 - \alpha_A)\alpha_B$
Semi-Transparent Objects

Pixel $A = (C_A, \alpha_A)$ over $B = (C_B, \alpha_B)$:

- Opacity of A in $(A$ over $B)$ is α_A
- Apparent color of A in $(A$ over $B)$ is $C_A \alpha_A$
- Opacity of B in $(A$ over $B)$ is $(1 - \alpha_A) \alpha_B$
- Apparent color of B in $(A$ over $B)$ is $C_B (1 - \alpha_A) \alpha_B$
- Opacity of $(A$ over $B)$ is $\alpha_A + (1 - \alpha_A) \alpha_B$
- Apparent color of $(A$ over $B)$ is $C_A \alpha_A + C_B (1 - \alpha_A) \alpha_B$

Pixel $(A$ over $B) = \left(\frac{C_A \cdot \alpha_A + C_B (1 - \alpha_A) \alpha_B}{\alpha_A + (1 - \alpha_A) \alpha_B}, \alpha_A + (1 - \alpha_A) \alpha_B \right)$

\[1 - \alpha_A \]
\[\alpha_A \]
\[C_A \]
\[A \]
\[\alpha_A \]
\[1 - \alpha_A \]
\[A \]
\[A \]
\[A \]
\[B \]
\[C_B \]
Image Composition “Goofs”

- Visible hard edges
- Incompatible lighting/shadows
- Incompatible camera focal lengths

[Kee et al., Exposing Photo Manipulation from Shading and Shadows]