Last Class

Michael Kazhdan

(601.457/657)
Overview

• Midterm Review

• Summary of the Course

• Announcements
Overview

• Midterm Review
• Summary of the Course
• Announcements
Syllabus

- Image Processing (2D)
- Rendering (3D)
- Modeling (3D)
- Animation (4D)
Syllabus: Image Processing

- Image Representation
 - Sampling
 - Reconstruction
 - Quantization & Aliasing

Discrete Samples * Reconstruction Filter = Reconstructed Function
Syllabus: Image Processing

• Image Representation
 ◦ Sampling
 ◦ Reconstruction
 ◦ Quantization & Aliasing

Original (8 bits) Quantized (1 bit) Random Dither (1 bit) Ordered Dither (1 bit) Floyd-Steinberg Dither (1 bit)
Syllabus: Image Processing

• Image Representation
 ◦ Sampling
 ◦ Reconstruction
 ◦ Quantization & Aliasing

• Image Processing
 ◦ Filtering
 ◦ Warping
 ◦ Morphing
 ◦ Compositing
Syllabus: Image Processing

• Image Representation
 ◦ Sampling
 ◦ Reconstruction
 ◦ Quantization & Aliasing

• Image Processing
 ◦ Filtering
 ◦ Warping
 ◦ Morphing
 ◦ Compositing
Syllabus: Rendering

• Global Illumination
 ▪ Ray tracing
 » Ray casting
 » Illumination equation
 » Modeling transformations
 » Hierarchical scene graphs
 ▪ Radiosity
Syllabus: Rendering

• Global Illumination
 ◦ Ray tracing
 » Ray casting
 » Illumination equation
 » Modeling transformations
 » Hierarchical scene graphs
 ◦ Radiosity
Syllabus: Rendering

• Global Illumination
 ◦ Ray tracing
 » Ray casting
 » Illumination equation
 » Modeling transformations
 » Hierarchical scene graphs
 ◦ Radiosity

• **3D Rendering Pipeline**
 ◦ Modeling transformations
 ◦ Viewing transformations
 ◦ Hidden surface removal
 ◦ Illumination, shading & textures
Syllabus: Modeling

• Representations of geometry
 ◦ **Curves (splines)**
 ◦ Surfaces (meshes, splines, subdivisions)
 ◦ Solids (voxels, CSG)
Syllabus: Modeling

- Representations of geometry
 - Curves (splines)
 - Surfaces (meshes, splines, subdivisions)
 - Solids (voxels, CSG)
Syllabus: Modeling

- Representations of geometry
 - Curves (splines)
 - Surfaces (meshes, splines, subdivisions)
 - Solids (voxels, CSG)
Syllabus: Modeling

- Representations of geometry
 - Curves (splines)
 - Surfaces (meshes, splines, subdivisions)
 - Solids (voxels, CSG)
Syllabus: Modeling

- Representations of geometry
 - Curves (splines)
 - Surfaces (meshes, splines, subdivisions)
 - Solids (voxels, CSG)
Syllabus: Modeling

- Representations of geometry
 - Curves (splines)
 - Surfaces (meshes, splines, subdivisions)
 - Solids (voxels, CSG)
Syllabus: Modeling

- Representations of geometry
 - Curves (splines)
 - Surfaces (meshes, splines, subdivisions)
 - Solids (voxels, CSG)
Syllabus: Modeling

• Representations of geometry
 ○ Curves (splines)
 ○ **Surfaces** (meshes, splines, subdivisions)
 ○ Solids (voxels, CSG)
Syllabus: Modeling

- Representations of geometry
 - Curves (splines)
 - Surfaces (meshes, splines, subdivisions)
 - Solids (voxels, CSG)

Iso-Value $= \delta_1$

Iso-Value $= \delta_2$
Syllabus: Animation

- Key framing
 - Kinematics
 - Articulated figures

- Transformation
 - Interpolation/Blending
Syllabus: Animation

- Key framing
 - Kinematics
 - Articulated figures

- Transformation
 - Interpolation/Blending
Syllabus: Animation

• Key framing
 ◦ Kinematics
 ◦ Articulated figures

• Transformation
 ◦ Interpolation/Blending
Syllabus: Animation

• Key framing
 ○ Kinematics
 ○ Articulated figures

• Transformation
 ○ Interpolation/Blending

\[
\exp(Id, A) = \exp(A) = Id + A + \frac{1}{2!} A^2 + \frac{1}{3!} A^3 + ... + \frac{1}{n!} A^n
\]
What Else Have We Learned?

• CG is hard
 ◦ Lots of programming
 ◦ Lots of math

• Simple things often work quite well!
 ◦ Example: Illumination equation
 ◦ Example: Key-frame interpolation

• Some things which seem simple, aren’t
 ◦ Creating cool models
 ◦ Getting them to behave well

• Still a lot left to do!
Announcements

• Every semester there is a reading seminar in computer graphics
 ◦ Informal
 ◦ Read and discuss one paper a week
 ◦ You are welcome to join