Parametric Curves

Michael Kazhdan

(601.457/657)

HB 10.6 -- 10.9, 10.13
FvDFH 11.2
Overview

• What is a Spline?

• Specific Examples:
 ◦ Hermite Splines
 ◦ Cardinal Splines
 ◦ Uniform Cubic B-Splines

• Comparing Cardinal and Uniform Cubic B-Splines
What is a Spline in CG?

A spline is a \textit{piecewise polynomial function} whose derivatives satisfy some \textit{continuity constraints} across curve boundaries.

\[P_i(x) \quad x \in [0,1) \]

\[P_1(x) \quad x \in [0,1) \]

\[P_2(x) \quad x \in [0,1) \]

\[P_3(x) \quad x \in [0,1) \]

\[P_i(x) = \sum_{j=0}^{n} a_{ij} \cdot x^j \]
What is a Spline in CG?

A spline is a \textit{piecewise polynomial function} whose derivatives satisfy some \textit{continuity constraints} across curve boundaries.

\[
P_i(x) = \sum_{j=0}^{n} a_{ij} \cdot x^j
\]

\[
P_1(1) = P_2(0)
P_1'(1) = P_2'(0)
\]

\[
P_2(1) = P_3(0)
P_2'(1) = P_3'(0)
\]

\[
\ldots
\]
Overview

• What is a Spline?

• Specific Examples:
 ◦ Hermite Splines
 ◦ Cardinal Splines
 ◦ Uniform Cubic B-Splines

• Comparing Cardinal and Uniform Cubic B-Splines
Specific Example: Hermite Splines

- Interpolating piecewise cubic polynomial, each specified by:
 - Start/end positions
 - Start/end tangents

- Iteratively construct the curve between adjacent end points that interpolate positions and tangents.
Specific Example: Hermite Splines

- Interpolating piecewise cubic polynomial, each specified by:
 - Start/end positions
 - Start/end tangents

- Iteratively construct the curve between adjacent end points that interpolate positions and tangents.
Specific Example: Hermite Splines

- **Interpolating** piecewise *cubic* polynomial, each specified by:
 - Start/end positions
 - Start/end tangents

- Iteratively construct the curve between adjacent end points that interpolate positions and tangents.
Specific Example: Hermite Splines

• **Interpolating** piecewise *cubic* polynomial, each specified by:
 - Start/end positions
 - Start/end tangents

• Iteratively construct the curve between adjacent end points that interpolate positions and tangents.
Specific Example: Hermite Splines

- **Interpolating** piecewise *cubic* polynomial, each specified by:
 - Start/end positions
 - Start/end tangents

- Iteratively construct the curve between adjacent end points that interpolate positions and tangents.
Specific Example: Hermite Splines

- Interpolating piecewise cubic polynomial, each specified by:
 - Start/end positions
 - Start/end tangents

- Iteratively construct the curve between adjacent end points that interpolate positions and tangents.
Specific Example: Hermite Splines

- **Interpolating** piecewise *cubic* polynomial, each specified by:
 - Start/end positions
 - Start/end tangents

- Iteratively construct the curve between adjacent end points that interpolate positions and tangents.

Because the end-points of adjacent curves share the same position and derivatives, the Hermite spline is C^1 by construction.
Specific Example: Hermite Splines

Given the polynomial:

\[P_k(u) = a \cdot u^3 + b \cdot u^2 + c \cdot u + d \]

we can write its derivative as:

\[P'_k(u) = 3 \cdot a \cdot u^2 + 2 \cdot b \cdot u + c \]

Using the matrix representations:

\[P_k(u) = (u^3 \quad u^2 \quad u \quad 1) \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \quad P'_k(u) = (3 \cdot u^2 \quad 2 \cdot u \quad 1 \quad 0) \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \]
Specific Example: Hermite Splines

\[P_k(u) = (u^3 \quad u^2 \quad u \quad 1) \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \quad P'_k(u) = (3 \cdot u^2 \quad 2 \cdot u \quad 1 \quad 0) \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \]

We can express the values at the end-points as:

\[p_k = P_k(0) = (0 \quad 0 \quad 0 \quad 1) \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \quad \hat{t}_k = P'_k(0) = (0 \quad 0 \quad 1 \quad 0) \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \]

\[p_{k+1} = P_k(1) = (1 \quad 1 \quad 1 \quad 1) \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \quad \hat{t}_{k+1} = P'_k(1) = (3 \quad 2 \quad 1 \quad 0) \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \]
Specific Example: Hermite Splines

\[
p_k = P_k(0) = (0 \ 0 \ 0 \ 1) \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \quad \ddot{t}_k = P'_k(0) = (0 \ 0 \ 1 \ 0) \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}
\]

\[
p_{k+1} = P_k(1) = (1 \ 1 \ 1 \ 1) \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \quad \ddot{t}_{k+1} = P'_k(1) = (3 \ 2 \ 1 \ 0) \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}
\]

We can combine the equations into a single matrix expression:

\[
\begin{pmatrix} p_k \\ p_{k+1} \\ \ddot{t}_k \\ \ddot{t}_{k+1} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}
\]
Specific Example: Hermite Splines

\[
\begin{pmatrix}
p_k \\
p_{k+1} \\
\hat{t}_k \\
\hat{t}_{k+1}
\end{pmatrix} =
\begin{pmatrix}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
a \\
b \\
c \\
d
\end{pmatrix}
\]

Inverting, we get:

\[
\begin{pmatrix}
a \\
b \\
c \\
d
\end{pmatrix} =
\begin{pmatrix}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0
\end{pmatrix}^{-1}
\begin{pmatrix}
p_k \\
p_{k+1} \\
\hat{t}_k \\
\hat{t}_{k+1}
\end{pmatrix} =
\begin{pmatrix}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
p_k \\
p_{k+1} \\
\hat{t}_k \\
\hat{t}_{k+1}
\end{pmatrix}
\]
Specific Example: Hermite Splines

\[
\begin{pmatrix}
 a \\
 b \\
 c \\
 d
\end{pmatrix}
=
\begin{pmatrix}
 2 & -2 & 1 & 1 \\
 -3 & 3 & -2 & -1 \\
 0 & 0 & 1 & 0 \\
 1 & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
 p_k \\
 p_{k+1} \\
 \tilde{t}_k \\
 \tilde{t}_{k+1}
\end{pmatrix}
\]

Using the fact that:

\[
P_k(u) = (u^3 \quad u^2 \quad u \quad 1) \cdot
\begin{pmatrix}
 a \\
 b \\
 c \\
 d
\end{pmatrix}
\]

We get:

\[
P_k(u) = (u^3 \quad u^2 \quad u \quad 1)
\begin{pmatrix}
 2 & -2 & 1 & 1 \\
 -3 & 3 & -2 & -1 \\
 0 & 0 & 1 & 0 \\
 1 & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
 p_k \\
 p_{k+1} \\
 \tilde{t}_k \\
 \tilde{t}_{k+1}
\end{pmatrix}
\]

parameters \hspace{1cm} M_{Hermite} \hspace{1cm} boundary info
Specific Example: Hermite Splines

Setting:

- \(H_0(u) = 2u^3 - 3u^2 + 1 \)
- \(H_1(u) = -2u^3 + 3u^2 \)
- \(H_2(u) = u^3 - 2u^2 + u \)
- \(H_3(u) = u^3 - u^2 \)

Blending Functions

\[
P_k(u) = p_k \cdot H_0(u) + p_{k+1} \cdot H_1(u) + \tilde{t}_k \cdot H_2(u) + \tilde{t}_{k+1} \cdot H_3(u)
\]
Specific Example: Hermite Splines

- **Interpolating** piecewise *cubic* polynomial, each specified by:
 - Start/end positions
 - Start/end tangents

- Iteratively construct the curve between adjacent end points that interpolate positions and tangents.

Given the control points, how do we define the value of the tangents/derivatives?
Overview

• What is a Spline?

• Specific Examples:
 ○ Hermite Splines
 ○ Cardinal Splines
 ○ Uniform Cubic B-Splines

• Comparing Cardinal and Uniform Cubic B-Splines
Specific Example: Cardinal Splines

- Interpolating piecewise cubic polynomial, each specified by four control points.
- Iteratively construct the curve between middle two points using adjacent points to define tangents.
Specific Example: Cardinal Splines

- **Interpolating** piecewise *cubic* polynomial, each specified by four control points.
- Iteratively construct the curve between middle two points using adjacent points to define tangents.
Specific Example: Cardinal Splines

- Interpolating piecewise cubic polynomial, each specified by four control points.
- Iteratively construct the curve between middle two points using adjacent points to define tangents.
Specific Example: Cardinal Splines

- **Interpolating** piecewise cubic polynomial, each specified by four control points.
- Iteratively construct the curve between middle two points using adjacent points to define tangents.
Specific Example: Cardinal Splines

- **Interpolating** piecewise *cubic* polynomial, each specified by four control points.
- Iteratively construct the curve between middle two points using adjacent points to define tangents.
Specific Example: Cardinal Splines

- **Interpolating** piecewise *cubic* polynomial, each specified by four control points.
- Iteratively construct the curve between middle two points using adjacent points to define tangents.
Specific Example: Cardinal Splines

- **Interpolating** piecewise *cubic* polynomial, each specified by four control points.
- Iteratively construct the curve between middle two points using adjacent points to define tangents.
Specific Example: Cardinal Splines

- **Interpolating** piecewise *cubic* polynomial, each specified by four control points.
- Iteratively construct the curve between middle two points using adjacent points to define tangents.
Specific Example: Cardinal Splines

- Interpolating piecewise cubic polynomial, each specified by four control points.
- Iteratively construct the curve between middle two points using adjacent points to define tangents.
Specific Example: Cardinal Splines

- **Interpolating** piecewise *cubic* polynomial, each specified by four control points.
- Iteratively construct the curve between middle two points using adjacent points to define tangents.
Specific Example: Cardinal Splines

- **Interpolating** piecewise *cubic* polynomial, each specified by four control points.
- Iteratively construct the curve between middle two points using adjacent points to define tangents.
Specific Example: Cardinal Splines

- Interpolating piecewise cubic polynomial, each specified by four control points.
- Iteratively construct the curve between middle two points using adjacent points to define tangents.
Specific Example: Cardinal Splines

- Interpolating piecewise cubic polynomial, each specified by four control points.
- Iteratively construct the curve between middle two points using adjacent points to define tangents.

Because the end-points of adjacent curves share the same position and derivatives, the Cardinal spline has C^1 continuity.
Specific Example: Cardinal Splines

Using Hermite splines, we have:

\[P_k(u) = \begin{pmatrix} u^3 & u^2 & u & 1 \end{pmatrix} \begin{pmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} p_k \\ p_{k+1} \\ \vec{t}_k \\ \vec{t}_{k+1} \end{pmatrix} \]

\[\vec{t}_k = s(p_{k+1} - p_{k-1}) \]

\[\vec{t}_{k+1} = s(p_{k+2} - p_k) \]
Specific Example: Cardinal Splines

\[P_k(u) = (u^3 \quad u^2 \quad u \quad 1) \begin{pmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} p_k \\ p_{k+1} \\ \tilde{t}_k \\ \tilde{t}_{k+1} \end{pmatrix} \]

\[
\begin{pmatrix}
 p_k \\
 p_{k+1} \\
 \tilde{t}_k \\
 \tilde{t}_{k+1}
\end{pmatrix} =
\begin{pmatrix}
 p_k \\
 p_{k+1} \\
 s(p_{k+1} - p_k) \\
 s(p_k + 2 - p_k)
\end{pmatrix}
\]

We can express the boundary conditions as:

\[
\begin{pmatrix}
 p_k \\
 p_{k+1} \\
 \tilde{t}_k \\
 \tilde{t}_{k+1}
\end{pmatrix} =
\begin{pmatrix}
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 -s & 0 & s & 0 \\
 0 & -s & 0 & s
\end{pmatrix} \begin{pmatrix}
 p_{k-1} \\
 p_k \\
 p_{k+1} \\
 p_{k+2}
\end{pmatrix}
\]
Specific Example: Uniform Cubic B-Splines

\[P_k(u) = (u^3 \quad u^2 \quad u \quad 1) \begin{pmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} p_k \\ p_{k+1} \\ \tilde{t}_k \\ \tilde{t}_{k+1} \end{pmatrix} \]

\[\begin{pmatrix} p_k \\ p_{k+1} \\ \tilde{t}_k \\ \tilde{t}_{k+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s & 0 & s & 0 \\ 0 & -s & 0 & s \end{pmatrix} \begin{pmatrix} p_{k-1} \\ p_k \\ p_{k+1} \\ p_{k+2} \end{pmatrix} \]

This gives:

\[P_k(u) = (u^3 \quad u^2 \quad u \quad 1) \begin{pmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s & 0 & s & 0 \\ 0 & -s & 0 & s \end{pmatrix} \begin{pmatrix} p_{k-1} \\ p_k \\ p_{k+1} \\ p_{k+2} \end{pmatrix} \]
Specific Example: Cardinal Splines

\[P_k(u) = (u^3 \quad u^2 \quad u \quad 1) \begin{pmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s & 0 & s & 0 \\ 0 & -s & 0 & s \end{pmatrix} \begin{pmatrix} p_{k-1} \\ p_k \\ p_{k+1} \\ p_{k+2} \end{pmatrix} \]

Multiplying, we get the Cardinal matrix representation:

\[P_k(u) = (u^3 \quad u^2 \quad u \quad 1) \begin{pmatrix} -s & 2 - s & s - 2 & s \\ 2s & s - 3 & 3 - 2s & -s \\ -s & 0 & s & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} p_{k-1} \\ p_k \\ p_{k+1} \\ p_{k+2} \end{pmatrix} \]
Specific Example: Cardinal Splines

Setting:

- \(C_0(u) = -su^3 + 2su^2 - su \)
- \(C_1(u) = (2 - s)u^3 + (s - 3)u^2 + 1 \)
- \(C_2(u) = (s - 2)u^3 + (3 - 2s)u^2 + su \)
- \(C_3(u) = su^3 - su^2 \)

Blending Functions

For \(s = 1/2 \):

\[
P_k(u) = C_0(u) \cdot p_{k-1} + C_1(u) \cdot p_k + C_2(u) \cdot p_{k+1} + C_3(u) \cdot p_{k+2}
\]
Specific Example: Cardinal Splines

- **Interpolating** piecewise *cubic* polynomial, each specified by four control points.

- Iteratively construct the curve between middle two points using adjacent points to define tangents.

At the first and last end-points, you can:
- Not draw the final segments
- Double up end points
- Loop the spline around
Overview

• What is a Spline?

• Specific Examples:
 ◦ Hermite Splines
 ◦ Cardinal Splines
 ◦ Uniform Cubic B-Splines

• Comparing Cardinal and Uniform Cubic B-Splines
Specific Example: Uniform Cubic B-Splines

- **Approximating** piecewise cubic polynomial, each specified by four control points.
- Iteratively construct the curve near middle two points using adjacent points to define positions and tangents.

\[p_0 \quad p_1 \quad p_2 \quad p_3 \quad p_4 \quad p_5 \quad p_6 \quad p_7 \]
Specific Example: Uniform Cubic B-Splines

- **Approximating** piecewise *cubic* polynomial, each specified by four control points.

- Iteratively construct the curve near middle two points using adjacent points to define positions and tangents.
Specific Example: Uniform Cubic B-Splines

- **Approximating** piecewise *cubic* polynomial, each specified by four control points.
- Iteratively construct the curve near middle two points using adjacent points to define positions and tangents.
Specific Example: Uniform Cubic B-Splines

- Approximating piecewise cubic polynomial, each specified by four control points.
- Iteratively construct the curve near middle two points using adjacent points to define positions and tangents.
Specific Example: Uniform Cubic B-Splines

- **Approximating** piecewise *cubic* polynomial, each specified by four control points.
- Iteratively construct the curve near middle two points using adjacent points to define positions and tangents.
Specific Example: Uniform Cubic B-Splines

- **Approximating** piecewise *cubic* polynomial, each specified by four control points.

- Iteratively construct the curve near middle two points using adjacent points to define positions and tangents.
Specific Example: Uniform Cubic B-Splines

- **Approximating** piecewise *cubic* polynomial, each specified by four control points.
- Iteratively construct the curve near middle two points using adjacent points to define positions and tangents.
Specific Example: Uniform Cubic B-Splines

- Approximating piecewise cubic polynomial, each specified by four control points.
- Iteratively construct the curve near middle two points using adjacent points to define positions and tangents.
Specific Example: Uniform Cubic B-Splines

- Approximating piecewise cubic polynomial, each specified by four control points.
- Iteratively construct the curve near middle two points using adjacent points to define positions and tangents.
Specific Example: Uniform Cubic B-Splines

- Approximating piecewise cubic polynomial, each specified by four control points.
- Iteratively construct the curve near middle two points using adjacent points to define positions and tangents.
Specific Example: Uniform Cubic B-Splines

- Approximating piecewise cubic polynomial, each specified by four control points.
- Iteratively construct the curve near middle two points using adjacent points to define positions and tangents.
Specific Example: Uniform Cubic B-Splines

- Approximating piecewise cubic polynomial, each specified by four control points.
- Iteratively construct the curve near middle two points using adjacent points to define positions and tangents.
Specific Example: Uniform Cubic B-Splines

- **Approximating** piecewise *cubic* polynomial, each specified by four control points.

- Iteratively construct the curve near middle two points using adjacent points to define positions and tangents.
Specific Example: Uniform Cubic B-Splines

- **Approximating** piecewise *cubic* polynomial, each specified by four control points.
- Iteratively construct the curve near middle two points using adjacent points to define positions and tangents.
Specific Example: Uniform Cubic B-Splines

- **Approximating** piecewise *cubic* polynomial, each specified by four control points.

- Iteratively construct the curve near middle two points using adjacent points to define positions and tangents.
Specific Example: Uniform Cubic B-Splines

- **Approximating** piecewise *cubic* polynomial, each specified by four control points.

- Iteratively construct the curve near middle two points using adjacent points to define positions and tangents.
Specific Example: Uniform Cubic B-Splines

- **Approximating** piecewise cubic polynomial, each specified by four control points.

- Iteratively construct the curve near middle two points using adjacent points to define positions and tangents.
Specific Example: Uniform Cubic B-Splines

- Approximating piecewise cubic polynomial, each specified by four control points.
- Iteratively construct the curve near middle two points using adjacent points to define positions and tangents.
Specific Example: Uniform Cubic B-Splines

- **Approximating** piecewise *cubic* polynomial, each specified by four control points.
- Iteratively construct the curve near middle two points using adjacent points to define positions and tangents.

\[
\begin{align*}
&\mathbf{p_0} \quad \mathbf{p_1} \quad \mathbf{p_2} \quad \mathbf{p_3} \\
&\mathbf{p_4} \quad \mathbf{p_5} \quad \mathbf{p_6} \quad \mathbf{p_7}
\end{align*}
\]
Specific Example: Uniform Cubic B-Splines

Using Hermite splines, we have:

\[P_k(u) = (u^3 \quad u^2 \quad u \quad 1) \begin{pmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} p'_k \\ p'_{k+1} \\ \tilde{t}_k \\ \tilde{t}_{k+1} \end{pmatrix} \]

\[M_{\text{Hermite}} \]

\[p'_k = \frac{(p_{k-1} + 4p_k + p_{k+1})}{6} \]

\[p'_{k+1} = \frac{(p_k + 4p_{k+1} + p_{k+2})}{6} \]

\[\tilde{t}_k = s(p_{k+1} - p_{k-1}) \]

\[\tilde{t}_{k+1} = s(p_{k+2} - p_k) \]
Specific Example: Uniform Cubic B-Splines

\[P_k(u) = (u^3 \quad u^2 \quad u \quad 1) \begin{pmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} p' \k \\ p'_{k+1} \\ \hat{t}_k \\ \hat{t}_{k+1} \end{pmatrix} \]

\[
\begin{pmatrix} p' \k \\ p'_{k+1} \\ \hat{t}_k \\ \hat{t}_{k+1} \end{pmatrix} = \frac{1}{6} \begin{pmatrix} p_{k-1} + 4p_k + p_{k+1} \\ p_k + 4p_{k+1} + p_{k+2} \\ 6s(p_{k+1} - p_{k-1}) \\ 6s(p_{k+2} - p_k) \end{pmatrix}
\]

We can express the boundary conditions as:

\[
\begin{pmatrix} p' \k \\ p'_{k+1} \\ \hat{t}_k \\ \hat{t}_{k+1} \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 & 4 & 1 & 0 \\ 0 & 1 & 4 & 1 \\ -6s & 0 & 6s & 0 \\ 1 & -6s & 0 & 6s \end{pmatrix} \begin{pmatrix} p_{k-1} \\ p_k \\ p_{k+1} \\ p_{k+2} \end{pmatrix}
\]
Specific Example: Uniform Cubic B-Splines

\[P_k(u) = (u^3 \quad u^2 \quad u \quad 1) \begin{pmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} p'_k \\ p'_{k+1} \\ \hat{t}_k \\ \hat{t}_{k+1} \end{pmatrix} \]

\[
\begin{pmatrix} p'_k \\ p'_{k+1} \\ \hat{t}_k \\ \hat{t}_{k+1} \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1 & 4 & 1 & 0 \\ 0 & 1 & 4 & 1 \\ -6s & 0 & 6s & 0 \\ 1 & -6s & 0 & 6s \end{pmatrix} \begin{pmatrix} p_{k-1} \\ p_k \\ p_{k+1} \\ p_{k+2} \end{pmatrix}
\]

This gives:

\[P_k(u) = (u^3 \quad u^2 \quad u \quad 1) \begin{pmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \frac{1}{6} \begin{pmatrix} 1 & 4 & 1 & 0 \\ 0 & 1 & 4 & 1 \\ -6s & 0 & 6s & 0 \\ 1 & -6s & 0 & 6s \end{pmatrix} \begin{pmatrix} p_{k-1} \\ p_k \\ p_{k+1} \\ p_{k+2} \end{pmatrix} \]
Specific Example: Uniform Cubic B-Splines

\[P_k(u) = (u^3 \quad u^2 \quad u \quad 1) \begin{pmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \frac{1}{6} \begin{pmatrix} 1 & 4 & 1 & 0 \\ 0 & 1 & 4 & 1 \\ -6s & 0 & 6s & 0 \\ 1 & -6s & 0 & 6s \end{pmatrix} \begin{pmatrix} p_{k-1} \\ p_k \\ p_{k+1} \\ p_{k+2} \end{pmatrix} \]

Multiplying, we get the uniform cubic B-spline matrix representation:

\[P_k(u) = (u^3 \quad u^2 \quad u \quad 1) \frac{1}{6} \begin{pmatrix} 2 - 6s & 6 - 6s & -6 + 6s & -2 + 6s \\ -3 + 12s & -9 + 6s & 9 - 12s & 3 - 6s \\ -6s & 0 & 6s & 0 \\ 1 & 4 & 1 & 0 \end{pmatrix} \begin{pmatrix} p_{k-1} \\ p_k \\ p_{k+1} \\ p_{k+2} \end{pmatrix} \]
Specific Example: Uniform Cubic B-Splines

Setting the blending functions to:

- \(B_{0,3}(u) = (\frac{1}{3} - s)u^3 + (-\frac{1}{2} + 2s)u^2 - su + \frac{1}{6} \)
- \(B_{1,3}(u) = (1 - s)u^3 + (-\frac{3}{2} + s)u^2 + \frac{2}{3} \)
- \(B_{2,3}(u) = (-1 + s)u^3 + (\frac{3}{2} - 2s)u^2 + su + \frac{1}{6} \)
- \(B_{3,3}(u) = (-\frac{1}{3} + s)u^3 + (\frac{1}{2} - s)u^2 \)

For \(s = 1/2 \):

\[
P_k(u) = B_{0,3}(u) \cdot p_{k-1} + B_{1,3}(u) \cdot p_k + B_{2,3}(u) \cdot p_{k+1} + B_{3,3}(u) \cdot p_{k+2}
\]
Specific Example: Uniform Cubic B-Splines

- **Approximating** piecewise *cubic* polynomial, each specified by four control points.
- Iteratively construct the curve near middle two points using adjacent points to define positions and tangents.

At the first and last end-points, you can:
- Not draw the final segments
- Double up end points
- Loop the spline around
Overview

• What is a Spline?

• Specific Examples:
 ◦ Hermite Splines
 ◦ Cardinal Splines
 ◦ Uniform Cubic B-Splines

• Comparing Cardinal and Uniform Cubic B-Splines
Blending Functions

Blending functions provide a way for expressing the functions $P_k(u)$ as a weighted sum of the four control points $p_{k-1}, p_k, p_{k+1},$ and p_{k+2}:

$$P_k(u) = BF_0(u) \cdot p_{k-1} + BF_1(u) \cdot p_k + BF_2(u) \cdot p_{k+1} + BF_3(u) \cdot p_{k+2}$$
Blending Functions

Properties:

- **Translation Commutativity:**
 - If we translate all the control points by the same vector \(q \), the position of the new point at the value \(u \) will be the position of the old value at \(u \), translated by \(q \).

\[P_k(u) = BF_0(u) \cdot p_{k-1} + BF_1(u) \cdot p_k + BF_2(u) \cdot p_{k+1} + BF_3(u) \cdot p_{k+2} \]
Comparison: Cardinal vs. Cubic B

Cardinal Splines ($s = 1/2$)

- $BF_0(u) = -\frac{1}{2}u^3 + u^2 - \frac{1}{2}u$
- $BF_1(u) = \frac{3}{2}u^3 - \frac{5}{2}u^2 + 1$
- $BF_2(u) = -\frac{3}{2}u^3 + 2u^2 + \frac{1}{2}u$
- $BF_3(u) = \frac{1}{2}u^3 - \frac{1}{2}u^2$

$BF_0(u) + BF_1(u) + BF_2(u) + BF_3(u) = 1$

Cubic B-Splines ($s = 1/2$)

- $BF_0(u) = -\frac{1}{6}u^3 + \frac{1}{2}u^2 - \frac{1}{2}u + \frac{1}{6}$
- $BF_1(u) = \frac{1}{2}u^3 - u^2 + \frac{2}{3}$
- $BF_2(u) = -\frac{1}{2}u^3 + \frac{1}{2}u^2 + \frac{1}{2}u + \frac{1}{6}$
- $BF_3(u) = \frac{1}{6}u^3$

$BF_0(u) + BF_1(u) + BF_2(u) + BF_3(u) = 1$

$P_k(u) = BF_0(u) \cdot p_{k-1} + BF_1(u) \cdot p_k + BF_2(u) \cdot p_{k+1} + BF_3(u) \cdot p_{k+2}$
Blending Functions

Properties:

- Translation Commutativity:
 \[BF_0(u) + BF_1(u) + BF_2(u) + BF_3(u) = 1 \text{ for all } 0 \leq u \leq 1. \]

- Continuity:
 - We need the curve \(P_{k+1}(u) \) to begin where \(P_k(u) \) ended.
 - Taking the difference, we get:
 \[0 = P_{k+1}(0) - P_k(1) \]
 - Expanding this out, we get:
 \[
 0 = \left(-BF_0(1) \right) p_{k-1} \\
 + \left(BF_0(0) - BF_1(1) \right) p_k \\
 + \left(BF_1(0) - BF_2(1) \right) p_{k+1} \\
 + \left(BF_2(0) - BF_3(1) \right) p_{k+2} \\
 + \left(BF_3(0) \right) p_{k+3}
 \]
 - Since this is true for all control points \(\{p_{k-1}, p_k, p_{k+1}, p_{k+2}, p_{k+3}\} \), we get:
 \[
 0 = BF_0(1) \\
 BF_0(0) = BF_1(1) \\
 BF_1(0) = BF_2(1) \\
 BF_2(0) = BF_3(1) \\
 BF_3(0) = 0
 \]

\[
P_k(u) = BF_0(u) \cdot p_{k-1} + BF_1(u) \cdot p_k + BF_2(u) \cdot p_{k+1} + BF_3(u) \cdot p_{k+2}
\]
Blending Functions

Properties:

• Translation Commutativity:

More Generally, for the spline to have continuous n-th order derivatives, the blending functions need to satisfy:

\[0 = BF_0^{(n)}(1) \]
\[BF_0^{(n)}(0) = BF_1^{(n)}(1) \]
\[BF_1^{(n)}(0) = BF_2^{(n)}(1) \]
\[BF_2^{(n)}(0) = BF_3^{(n)}(1) \]
\[BF_3^{(n)}(0) = 0 \]

More Generally, for the spline to have continuous n-th order derivatives, the blending functions need to satisfy:

\[P_k(u) = BF_0(u) \cdot p_{k-1} + BF_1(u) \cdot p_k + BF_2(u) \cdot p_{k+1} + BF_3(u) \cdot p_{k+2} \]
Comparison: Cardinal vs. Cubic B

Cardinal Splines \((s = \frac{1}{2})\)

\[
BF_0(u) = -\frac{1}{2} u^3 + u^2 - \frac{1}{2} u \\
BF_1(u) = \frac{3}{2} u^3 - \frac{5}{2} u^2 + 1 \\
BF_2(u) = -\frac{3}{2} u^3 + 2u^2 + \frac{1}{2} u \\
BF_3(u) = \frac{1}{2} u^3 - \frac{1}{2} u^2
\]

\[
BF_0(0) = 0 \quad BF_0(1) = 0 \\
BF_1(0) = 1 \quad BF_1(1) = 0 \\
BF_2(0) = 0 \quad BF_2(1) = 1 \\
BF_3(0) = 0 \quad BF_3(1) = 0
\]

Cubic B-Splines \((s = \frac{1}{2})\)

\[
BF_0(u) = -\frac{1}{6} u^3 + \frac{1}{2} u^2 - \frac{1}{2} u + \frac{1}{6} \\
BF_1(u) = \frac{1}{2} u^3 - u^2 + \frac{2}{3} \\
BF_2(u) = -\frac{1}{2} u^3 + \frac{1}{2} u^2 + \frac{1}{2} u + \frac{1}{6} \\
BF_3(u) = \frac{1}{6} u^3
\]

\[
BF_0(0) = \frac{1}{6} \quad BF_0(1) = 0 \\
BF_1(0) = \frac{2}{3} \quad BF_1(1) = \frac{1}{6} \\
BF_2(0) = \frac{1}{6} \quad BF_2(1) = \frac{2}{3} \\
BF_3(0) = 0 \quad BF_3(1) = \frac{1}{6}
\]

\[P_k(u) = BF_0(u) \cdot p_{k-1} + BF_1(u) \cdot p_k + BF_2(u) \cdot p_{k+1} + BF_3(u) \cdot p_{k+2} \]
Comparison: Cardinal vs. Cubic B

Cardinal Splines ($s = 1/2$)

- $BF_0(u) = -\frac{1}{2}u^3 + u^2 - \frac{1}{2}u$
- $BF_1(u) = \frac{3}{2}u^3 - \frac{5}{2}u^2 + 1$
- $BF_2(u) = -\frac{3}{2}u^3 + 2u^2 + \frac{1}{2}u$
- $BF_3(u) = \frac{1}{2}u^3 - \frac{1}{2}u^2$

- $BF_0'(0) = -\frac{1}{2}$
- $BF_1'(0) = 0$
- $BF_2'(0) = \frac{1}{2}$
- $BF_3'(0) = 0$

- $BF_0'(1) = 0$
- $BF_1'(1) = -\frac{1}{2}$
- $BF_2'(1) = 0$
- $BF_3'(1) = \frac{1}{2}$

Cubic B-Splines ($s = 1/2$)

- $BF_0(u) = -\frac{1}{6}u^3 + \frac{1}{2}u^2 - \frac{1}{2}u + \frac{1}{6}$
- $BF_1(u) = \frac{1}{2}u^3 - u^2 + \frac{2}{3}$
- $BF_2(u) = -\frac{1}{2}u^3 + \frac{1}{2}u^2 + \frac{1}{2}u + \frac{1}{6}$
- $BF_3(u) = \frac{1}{6}u^3$

- $BF_0'(0) = -\frac{1}{2}$
- $BF_1'(0) = 0$
- $BF_2'(0) = \frac{1}{2}$
- $BF_3'(0) = 0$

- $BF_0'(1) = 0$
- $BF_1'(1) = -\frac{1}{2}$
- $BF_2'(1) = 0$
- $BF_3'(1) = \frac{1}{2}$

$p_k(u) = BF_0(u) \cdot p_{k-1} + BF_1(u) \cdot p_k + BF_2(u) \cdot p_{k+1} + BF_3(u) \cdot p_{k+2}$
Comparison: Cardinal vs. Cubic B

Cardinal Splines (\(s = 1/2\))

\[
\begin{align*}
BF_0(u) &= -\frac{1}{2}u^3 + u^2 - \frac{1}{2}u \\
BF_1(u) &= \frac{3}{2}u^3 - \frac{5}{2}u^2 + 1 \\
BF_2(u) &= -\frac{3}{2}u^3 + 2u^2 + \frac{1}{2}u \\
BF_3(u) &= \frac{1}{2}u^3 - \frac{1}{2}u^2
\end{align*}
\]

\[
\begin{align*}
BF_0''(0) &= 2 & BF_0''(1) &= 5 \\
BF_1''(0) &= -5 & BF_1''(1) &= 4 \\
BF_2''(0) &= 4 & BF_2''(1) &= -5 \\
BF_3''(0) &= -1 & BF_3''(1) &= 2
\end{align*}
\]

Cubic B-Splines (\(s = 1/2\))

\[
\begin{align*}
BF_0(u) &= -\frac{1}{6}u^3 + \frac{1}{2}u^2 - \frac{1}{2}u + \frac{1}{6} \\
BF_1(u) &= \frac{1}{2}u^3 - u^2 + \frac{2}{3} \\
BF_2(u) &= -\frac{1}{2}u^3 + \frac{1}{2}u^2 + \frac{1}{2}u + \frac{1}{6} \\
BF_3(u) &= \frac{1}{6}u^3
\end{align*}
\]

\[
\begin{align*}
BF_0''(0) &= 1 & BF_0''(1) &= 0 \\
BF_1''(0) &= -2 & BF_1''(1) &= 1 \\
BF_2''(0) &= 1 & BF_2''(1) &= -2 \\
BF_3''(0) &= 0 & BF_3''(1) &= 1
\end{align*}
\]

\[P_k(u) = BF_0(u) \cdot p_{k-1} + BF_1(u) \cdot p_k + BF_2(u) \cdot p_{k+1} + BF_3(u) \cdot p_{k+2}\]
Blending Functions

Properties:

• Translation Commutativity:
 \[BF_0(u) + BF_1(u) + BF_2(u) + BF_3(u) = 1 \text{ for all } 0 \leq u \leq 1. \]

• Continuity:
 \[0 = BF_0(1), \quad BF_0(0) = BF_1(1), \quad BF_1(0) = BF_2(1), \quad BF_2(0) = BF_3(1), \quad BF_3(0) = 0 \]

• Convex Hull Containment:
 ◦ A point is inside the convex hull of a collection of points if and only if it can be expressed as the weighted average of the points, where all the weights are non-negative.
 \[\Rightarrow BF_0(u), BF_1(u), BF_2(u), BF_3(u) \geq 0, \text{ for all } 0 \leq u \leq 1. \]

\[P_k(u) = BF_0(u) \cdot p_{k-1} + BF_1(u) \cdot p_k + BF_2(u) \cdot p_{k+1} + BF_3(u) \cdot p_{k+2} \]
Comparison: Cardinal vs. Cubic B

Cardinal Splines ($s = 1/2$)

Cubic B-Splines ($s = 1/2$)

$P_k(u) = BF_0(u) \cdot p_{k-1} + BF_3(u)$

Note:
The weights need not be positive for every choice of s.
Comparison: Cardinal vs. Cubic B

Cardinal Splines ($s = 1/2$)

\[P_k(u) = BF_0(u) \cdot p_{k-1} + BF_1(u) \cdot p_k + BF_2(u) \cdot p_{k+1} + BF_3(u) \cdot p_{k+2} \]

Cubic B-Splines ($s = 1/2$)
Blending Functions

Properties:

• Translation Commutativity:
 \[BF_0(u) + BF_1(u) + BF_2(u) + BF_3(u) = 1 \] for all \(0 \leq u \leq 1 \).

• Continuity:
 \[0 = BF_0(1), BF_0(0) = BF_1(1), BF_1(0) = BF_2(1), BF_2(0) = BF_3(1), BF_3(0) = 0 \]

• Convex Hull Containment:
 \(BF_0(u), BF_1(u), BF_2(u), BF_3(u) \geq 0 \), for all \(0 \leq u \leq 1 \).

• Interpolation:

 We want the spline segments to satisfy:
 \[P_k(0) = p_k \quad \text{and} \quad P_k(1) = p_{k+1} \]

 \[BF_0(0) = 0 \quad BF_0(1) = 0 \]
 \[BF_1(0) = 1 \quad BF_1(1) = 0 \]
 \[BF_2(0) = 0 \quad BF_2(1) = 1 \]
 \[BF_3(0) = 0 \quad BF_3(1) = 0 \]

\[P_k(u) = BF_0(u) \cdot p_{k-1} + BF_1(u) \cdot p_k + BF_2(u) \cdot p_{k+1} + BF_3(u) \cdot p_{k+2} \]
Comparison: Cardinal vs. Cubic B

Cardinal Splines ($s = 1/2$)

$$BF_0(u) = -\frac{1}{2}u^3 + u^2 - \frac{1}{2}u$$
$$BF_1(u) = \frac{3}{2}u^3 - \frac{5}{2}u^2 + 1$$
$$BF_2(u) = -\frac{3}{2}u^3 + 2u^2 + \frac{1}{2}u$$
$$BF_3(u) = \frac{1}{2}u^3 - \frac{1}{2}u^2$$

<table>
<thead>
<tr>
<th>Condition</th>
<th>Cardinal</th>
</tr>
</thead>
<tbody>
<tr>
<td>$BF_0(0)$</td>
<td>0</td>
</tr>
<tr>
<td>$BF_1(0)$</td>
<td>1</td>
</tr>
<tr>
<td>$BF_2(0)$</td>
<td>0</td>
</tr>
<tr>
<td>$BF_3(0)$</td>
<td>0</td>
</tr>
</tbody>
</table>

Cubic B-Splines ($s = 1/2$)

$$BF_0(u) = -\frac{1}{6}u^3 + \frac{1}{2}u^2 - \frac{1}{2}u + \frac{1}{6}$$
$$BF_1(u) = \frac{1}{2}u^3 - u^2 + \frac{2}{3}$$
$$BF_2(u) = -\frac{1}{2}u^3 + \frac{1}{2}u^2 + \frac{1}{2}u + \frac{1}{6}$$
$$BF_3(u) = \frac{1}{6}u^3$$

<table>
<thead>
<tr>
<th>Condition</th>
<th>Cubic B</th>
</tr>
</thead>
<tbody>
<tr>
<td>$BF_0(0)$</td>
<td>0</td>
</tr>
<tr>
<td>$BF_1(0)$</td>
<td>$\frac{2}{3}$</td>
</tr>
<tr>
<td>$BF_2(0)$</td>
<td>$\frac{1}{6}$</td>
</tr>
<tr>
<td>$BF_3(0)$</td>
<td>0</td>
</tr>
</tbody>
</table>

$$P_k(u) = BF_0(u) \cdot p_{k-1} + BF_1(u) \cdot p_k + BF_2(u) \cdot p_{k+1} + BF_3(u) \cdot p_{k+2}$$
Blending Functions

Properties:

- Translation Commutativity:
 \[BF_0(u) + BF_1(u) + BF_2(u) + BF_3(u) = 1 \] for all \(0 \leq u \leq 1 \).

- Continuity:
 \[

 \begin{align*}
 0 &= BF_0(1) \\
 BF_0(0) &= BF_1(1) \\
 BF_1(0) &= BF_2(1) \\
 BF_2(0) &= BF_3(1) \\
 BF_3(0) &= 0
 \end{align*}
 \]

- Convex Hull Containment:
 \[BF_0(u), BF_1(u), BF_2(u), BF_3(u) \geq 0, \text{ for all } 0 \leq u \leq 1. \]

- Interpolation:
 \[

 \begin{array}{ccc}
 BF_0(0) & 0 & BF_0(1) & 0 \\
 BF_1(0) & = & 1 & BF_1(1) & = & 0 \\
 BF_2(0) & 0 & BF_2(1) & = & 1 \\
 BF_3(0) & 0 & BF_3(1) & 0 \\
 \end{array}
 \]

Required Conditions

Desirable Conditions

\[
 P_k(u) = BF_0(u) \cdot p_{k-1} + BF_1(u) \cdot p_k + BF_2(u) \cdot p_{k+1} + BF_3(u) \cdot p_{k+2}
 \]
Summary

• A spline is a \textit{piecewise polynomial function} whose derivatives satisfy some \textit{continuity constraints} across curve junctions.

• Looked at specification for 3 splines:
 ◦ Hermite \text{\{Interpolating, cubic, C^1\}}
 ◦ Cardinal \text{\{Approximating, convex-hull containment, cubic, C^2\}}
 ◦ Uniform Cubic B-Spline

Spline Demo