3D Object Representation

Michael Kazhdan

(601.457/657)
3D Objects

How can this object be represented in a computer?
3D Objects

This one?

H&B Figure 10.46
3D Objects

This one?

H&B Figure 9.9
3D Objects

This one?
3D Object Representations

- Raw data
 - Point cloud
 - Range image
 - Polygon soup

- Surfaces
 - Mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep

- High-level structures
 - Scene graph
 - Skeleton
 - Application specific
Point Clouds

• Unstructured set of 3D point samples
 ◦ Acquired from random sampling, particle system implementations, etc.
Range Images

- An image storing depth instead of / as well as color
 - Acquired from 3D scanners
Polygon Soups

- Unstructured set of polygons
 - Created with interactive modeling systems, combining range images, etc.
3D Object Representations

- **Raw data**
 - Point cloud
 - Range image
 - Polygon soup

- **Surfaces**
 - Mesh
 - Subdivision
 - Parametric
 - Implicit

- **Solids**
 - Voxels
 - BSP tree
 - CSG
 - Sweep

- **High-level structures**
 - Scene graph
 - Skeleton
 - Application specific
(Manifold) Meshes

- Connected set of polygons (usually triangles)
Subdivision Surfaces

• Coarse mesh & subdivision rule
 ◦ Define smooth surface as limit of sequence of refinements
Parametric Surfaces

- Tensor product spline patches
 - Careful use of constraints to maintain continuity
Implicit Surfaces

- Points satisfying: $F(x, y, z) = 0$
3D Object Representations

- **Raw data**
 - Point cloud
 - Range image
 - Polygon soup

- **Surfaces**
 - Mesh
 - Subdivision
 - Parametric
 - Implicit

- **Solids**
 - Voxels
 - BSP tree
 - CSG
 - Sweep

- **High-level structures**
 - Scene graph
 - Skeleton
 - Application specific
Voxels

- Uniform grid of volumetric samples
 - Acquired from CT, MRI, etc.

FvDFH Figure 12.20

Stanford Graphics Laboratory
BSP Trees

- Binary space partition with solid cells labeled
 - Constructed from polygonal representations
Constructive Solid Geometry (CSG)

- Hierarchy of boolean set operations (union, difference, intersect) applied to simple shapes

FvDFH Figure 12.27
H&B Figure 9.9
Sweep Surfaces

- Solid swept by curve along trajectory

Stephen Chenney
U Wisconsin
3D Object Representations

- Raw data
 - Point cloud
 - Range image
 - Polygon soup

- Surfaces
 - Mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep

- High-level structures
 - Scene graph
 - Skeleton
 - Application specific
Scene Graphs

- Union of objects at leaf nodes
Skeletons

- Graph of curves with radii
Application Specific

Apo A-1
(Theoretical Biophysics Group,
University of Illinois at Urbana-Champaign)

Architectural Floorplan
Surfaces

• What makes a good surface representation?
 ◦ Concise
 ◦ Local support
 ◦ Affine invariant
 ◦ Arbitrary topology
 ◦ Guaranteed smoothness
 ◦ Natural parameterization
 ◦ Efficient display
 ◦ Efficient intersections
Surfaces

• What makes a good surface representation?
 ◦ Concise
 ◦ Local support
 ◦ Affine invariant
 ◦ Arbitrary topology
 ◦ Guaranteed smoothness
 ◦ Natural parameterization
 ◦ Efficient display
 ◦ Efficient intersections

Not Local Support
Surfaces

• What makes a good surface representation?
 ◦ Concise
 ◦ Local support
 ◦ Affine invariant
 ◦ Arbitrary topology
 ◦ Guaranteed smoothness
 ◦ Natural parameterization
 ◦ Efficient display
 ◦ Efficient intersections

Applying an affine transformation to the surface does not fundamentally change its representation.
Surfaces

• **What makes a good surface representation?**
 ○ Concise
 ○ Local support
 ○ Affine invariant
 ○ **Arbitrary topology**
 ○ Guaranteed smoothness
 ○ Natural parameterization
 ○ Efficient display
 ○ Efficient intersections

Topological Genus Equivalences
Surfaces

• What makes a good surface representation?
 ○ Concise
 ○ Local support
 ○ Affine invariant
 ○ Arbitrary topology
 ○ Guaranteed smoothness
 ○ Natural parameterization
 ○ Efficient display
 ○ Efficient intersections
Surfaces

What makes a good surface representation?

- Concise
- Local support
- Affine invariant
- Arbitrary topology
- Guaranteed smoothness
- Natural parameterization
- Efficient display
- Efficient intersections

A Parameterization (not necessarily natural)
Surfaces

• What makes a good surface representation?
 ○ Concise
 ○ Local support
 ○ Affine invariant
 ○ Arbitrary topology
 ○ Guaranteed smoothness
 ○ Natural parameterization
 ○ Efficient display
 ○ Efficient intersections