3D Polygon Rendering Pipeline

Michael Kazhdan

(601.457/657)

HB Ch. 12
FvDFH Ch. 6, 18.3
Announcements

• Do you want a final?
 ◦ Default is Wednesday Dec. 17th
 ◦ Otherwise there will be a second midterm December 5th
3D Polygon Rendering

- Many applications use rendering of 3D polygons with direct illumination
3D Polygon Rendering

• Many applications use rendering of 3D polygons with direct illumination

God of War
(Santa Monica Studio, 2018)
Ray Casting

- For each sample:
 - Construct ray from the camera into the scene
 - Find first surface intersected by ray through pixel
 - Compute color of sample based on surface radiance
 - Send pixels into the scene and get color
3D Polygon Rendering

- For each primitive:
 - Send points to the camera and set the pixel color
3D Rendering Pipeline (for direct illumination)

3D Geometric Primitives

- Modeling Transformation
- Viewing Transformation
- Lighting
- Projection Transformation
- Clipping
- Scan Conversion

3D Model

2D Image
3D Rendering Pipeline (for direct illumination)

3D Geometric Primitives

- **Modeling Transformation**
 - Transform from current (local) coordinate system into 3D world coordinate system

- **Viewing Transformation**

- **Lighting**

- **Projection Transformation**

- **Clipping**

- **Scan Conversion**

- **Image**
3D Rendering Pipeline (for direct illumination)

3D Geometric Primitives

- Modeling Transformation
- Viewing Transformation
- Lighting
- Projection Transformation
- Clipping
- Scan Conversion
- Image

Transform into 3D world coordinate system

Transform into 3D camera coordinate system
3D Rendering Pipeline (for direct illumination)

3D Geometric Primitives

- **Modeling Transformation**
- **Viewing Transformation**
- **Lighting**
- **Projection Transformation**
- **Clipping**
- **Scan Conversion**

Transform into 3D world coordinate system

Transform into 3D camera coordinate system

Illuminate according to lighting and reflectance

Image
3D Rendering Pipeline (for direct illumination)

3D Geometric Primitives

Modeling Transformation

Viewing Transformation

Lighting

Projection Transformation

Clipping

Scan Conversion

Image

Transform into 3D world coordinate system

Transform into 3D camera coordinate system

Illuminate according to lighting and reflectance

Transform into 2D camera coordinate system
3D Rendering Pipeline (for direct illumination)

3D Geometric Primitives

Modeling Transformation

Transform into 3D world coordinate system

Viewing Transformation

Transform into 3D camera coordinate system

Lighting

Illuminate according to lighting and reflectance

Projection Transformation

Transform into 2D camera coordinate system

Clipping

Clip (parts of) primitives outside camera’s view

Scan Conversion

Image
3D Rendering Pipeline (for direct illumination)

3D Geometric Primitives

- **Modeling Transformation**
 - Transform into 3D world coordinate system

- **Viewing Transformation**
 - Transform into 3D camera coordinate system

- **Lighting**
 - Illuminate according to lighting and reflectance

- **Projection Transformation**
 - Transform into 2D camera coordinate system

- **Clipping**
 - Clip (parts of) primitives outside camera’s view

- **Scan Conversion**
 - Draw pixels (includes texturing, hidden surface, etc.)

- **Image**
Transformations

3D Geometric Primitives

- Modeling Transformation
- Viewing Transformation
- Lighting
- Projection Transformation
- Clipping
- Scan Conversion
- Image

Transform into 3D world coordinate system

Transform into 3D camera coordinate system

Illuminate according to lighting and reflectance

Transform into 2D camera coordinate system

Clip primitives outside camera’s view

Draw pixels (includes texturing, hidden surface, etc.)
Recall: Homogeneous Coordinates

• Add a 4th coordinate to every 3D point

 ◦ \((x, y, z, w)\) represents a point at location \(\left(\frac{x}{w}, \frac{y}{w}, \frac{z}{w}\right)\)

 ◦ \((x, y, z, 0)\) represents a (directed) point at infinity

 ◦ \((0, 0, 0, 0)\) is not allowed
Transformations

\((x, y, z)\) → 3D Object Coordinates

Modeling Transformation

3D Object Coordinates → 3D World Coordinates

Viewing Transformation

3D World Coordinates → 3D Camera Coordinates

Projection Transformation

3D Camera Coordinates → 2D Screen Coordinates

Window-to-Viewport Transformation

2D Screen Coordinates → 2D Image Coordinates

\((x', y')\)

Transformations map points from one coordinate system to another.
Transformations

\[(x, y, z)\]

- **Modeling Transformation**
 - 3D Object Coordinates

- **Viewing Transformation**
 - 3D World Coordinates
 - 3D Camera Coordinates

- **Projection Transformation**
 - 2D Screen Coordinates

- **Window-to-Viewport Transformation**
 - 2D Image Coordinates

\[(x', y')\]
Viewing Transformation

- Canonical coordinate system
 - Convention is right-handed (looking down $-z$ axis)
 - Convenient for projection, clipping, etc.
Viewing Transformation

• Mapping from world to (homogeneous) camera coordinates:
 - Eye position maps to origin:
 \((E_x, E_y, E_z, 1) \rightarrow (0,0,0,1)\)
 - Right vector maps to \(x\)-axis:
 \((R_x, R_y, R_z, 0) \rightarrow (1,0,0,0)\)
 - Up vector maps to \(y\)-axis:
 \((U_x, U_y, U_z, 0) \rightarrow (0,1,0,0)\)
 - Back vector maps to \(z\)-axis:
 \((B_x, B_y, B_z, 0) \rightarrow (0,0,1,0)\)
Finding the Viewing Transformation

- We have the camera (in world coordinates)
- We want the matrix T taking objects from world to camera coordinates

$$p^c = C p^w$$

- Trick: find T^{-1} taking objects in camera to world

$$p^w = C^{-1} p^c$$

\[
\begin{pmatrix}
 x^c \\ y^c \\ z^c \\ 1
\end{pmatrix}_{p^c} = \begin{pmatrix}
 a & b & c & d \\
 e & f & g & h \\
 i & j & k & l \\
 0 & 0 & 0 & 1
\end{pmatrix}_C \begin{pmatrix}
 x^w \\ y^w \\ z^w \\ 1
\end{pmatrix}_{p^w}
\]
Finding the Viewing Transformation

- Trick: compute the map from camera to world coordinates:
 - \((E_x, E_y, E_z, 1) \leftarrow (0,0,0,1)\)
 - \((R_x, R_y, R_z, 0) \leftarrow (1,0,0,0)\)
 - \((U_x, U_y, U_z, 0) \leftarrow (0,1,0,0)\)
 - \((B_x, B_y, B_z, 0) \leftarrow (0,0,1,0)\)

- This matrix is \(C^{-1}\) so we invert it to get \(C\).
Transformations

\[(x, y, z)\]

- Modeling Transformation
 - 3D Object Coordinates
- Viewing Transformation
 - 3D World Coordinates
 - 3D Camera Coordinates
- Projection Transformation
 - 2D Screen Coordinates
- Window-to-Viewport Transformation
 - 2D Image Coordinates

\[(x', y')\]
Projection

• General definition:
 ◦ A linear transformation of points in n-space to m-space ($m < n$)

• In computer graphics:
 ◦ Map 3D camera coordinates to 2D screen coordinates
Taxonomy of Projections

Planar geometric projections

Parallel

Orthographic
 - Top (plan)
 - Front elevation
 - Side elevation

Axonometric
 - Isometric
 - Other

Oblique
 - Cabinet
 - Cavalier

One-point
 - Two-point
 - Three-point

Perspective

Other
Projection

- Two general classes of projections, both of which shoot rays from the scene, through the view plane:
 - **Parallel Projection:**
 - Rays converge at a point at infinity and are parallel
 - **Perspective “Projection”:**
 - Rays converge at a finite point, giving rise to perspective distortion
Taxonomy of Projections

Planar geometric projections

Parallel

Orthographic
 - Top (plan)
 - Front elevation
 - Side elevation

Axonometric
 - Isometric
 - Other

Oblique
 - Cabinet
 - Cavalier
 - Other

Perspective
 - One-point
 - Two-point
 - Three-point

Other
Parallel Projection

- Center of projection is at infinity
 - Direction of projection (DoP) same for all points

Angel Figure 5.4
Parallel Projection

✓ Parallel lines remain parallel
✓ Relative proportions of objects preserved
✗ Angles are not preserved
✗ Less realistic looking
Taxonomy of Projections

Planar geometric projections

Parallel

Orthographic

Top (plan)
Front elevation
Side elevation
Axonometric
Isometric

Oblique

Cabinet
Cavalier

One-point

Two-point
Three-point

Perspective

Other

FvDFH Figure 6.13
Orthographic Projections

- DoP perpendicular to view plane

[Diagram showing top, side, front, and isometric views of a building]
Orthographic Projections

- DoP perpendicular to view plane

- Lines perpendicular to the view plane vanish
- Faces parallel to the view plane are un-distorted.

Angel Figure 5.5
Taxonomy of Projections

Planar geometric projections

Parallel

Orthographic

Top (plan)

Front elevation

Axonometric

Side elevation

Isometric

Oblique

One-point

Cabinet

Cavalier

Two-point

Three-point

Perspective

Other

FvDFH Figure 6.13
Oblique Projections

- DoP not perpendicular to view plane

\[(x^s, y^s) = L(\cos \phi, \sin \phi) \]

\[(x^c, y^c, 1) \]

\[\phi \]

\[L \]

\[\phi = 45^\circ \]

\[L = \frac{1}{2} \]

\[\phi = 45^\circ \]

\[L = 1 \]

\[\phi = 45^\circ \]

\[L = \frac{1}{1/2} \]

- \(\phi \) is the angle of the projection of the view plane’s normal
- \(L \) is the scale factor applied to the view plane’s normal

Cavalier
(DoP \(\alpha = 45^\circ \))

Cabinet
(DoP \(\alpha = 63.4^\circ \))

H&B Figure 12.21
Parallel Projection Matrix

- General parallel projection transformation:

$$\begin{bmatrix} x^s \\ y^s \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & L \cos \phi & 0 \\ 0 & 1 & L \sin \phi & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x^c \\ y^c \\ z^c \\ 1 \end{bmatrix}$$

Cavalier
(DoP $\alpha = 45^\circ$)

Cabinet
(DoP $\alpha = 63.4^\circ$)

H&B Figure 12.21
Parallel Projection Matrix

- General parallel projection transformation:

\[
\begin{bmatrix}
 x^s \\
 y^s \\
 0 \\
 1
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 & L \cos \phi & 0 \\
 0 & 1 & L \sin \phi & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x^c \\
 y^c \\
 z^c \\
 1
\end{bmatrix}
\]

\(\phi = 45^\circ\)

Note:
This matrix represents an affine transformation

H&B Figure 12.21
Parallel Projection View Volume

Parallelepiped View Volume

Back Plane

Front Plane

window

H&B Figure 12.30
Taxonomy of Projections

Planar geometric projections

Parallel

Orthographic
 - Top (plan)
 - Front elevation
 - Side elevation

Oblique
 - Cabinet
 - Cavalier

One-point
 - Two-point
 - Three-point

Perspective

Other
Perspective “Projection”

- Map points onto “view plane” along “projectors” emanating from “center of projection” (CoP)
Perspective Projection

• How many vanishing points?

Number of vanishing points determined by number of axes parallel to the view plane

Angel Figure 5.10
Perspective Projection

• Parallel lines do not remain parallel!
Perspective Projection View Volume

Frustum View Volume

View Plane

Back Plane

Front Plane

window

Projection Reference Point

z_v

H&B Figure 12.30
Perspective Projection

- What are the coordinates of the point resulting from projection of \((x^c, y^c, z^c)\) onto the view plane a unit distance along the \(z\)-axis?
Perspective Projection

- For any point \((x^c, y^c, z^c)\) and any scalar \(\alpha\), the points \((x^c, y^c, z^c)\) and \((\alpha \cdot x^c, \alpha \cdot y^c, \alpha \cdot z^c)\) map to the same location.
Perspective Projection

- For any point \((x^c, y^c, z^c)\) and any scalar \(\alpha\), the points \((x^c, y^c, z^c)\) and \((\alpha \cdot x^c, \alpha \cdot y^c, \alpha \cdot z^c)\) map to the same location.

- Since we want the position of the point on the line that intersect the image plane at a unit distance along the \(z\)-axis:

\[
(x^c, y^c, z^c) \rightarrow \left(\frac{x^c}{z^c}, \frac{y^c}{z^c}, 1 \right)
\]
Perspective Projection Matrix

\[(x^c, y^c, z^c) \rightarrow \left(\frac{x^c}{z^c}, \frac{y^c}{z^c}, 1\right)\]

We can’t represent this with a 3 × 3 matrix!

With homogenous coordinates, we can write this as:

\[(x^c, y^c, z^c, 1) \rightarrow \left(\frac{x^c}{z^c}, \frac{y^c}{z^c}, 1, 1\right) \equiv (x^c, y^c, z^c, z^c)\]

In matrix form, this gives:

\[
\begin{bmatrix}
 x^s \\
 y^s \\
 1 \\
 1
\end{bmatrix}
\equiv
\begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
 x^c \\
 y^c \\
 z^c \\
 1
\end{bmatrix}
\]
Perspective Projection Matrix

\[(x^c, y^c, z^c) \rightarrow \left(\frac{x^c}{z^c}, \frac{y^c}{z^c}, 1 \right)\]

We can’t represent this with a 3 × 3 matrix!

With homogenous coordinates, we can write this as:

\[(x^c, y^c, z^c, 1) \rightarrow \left(\frac{x^c}{z^c}, \frac{y^c}{z^c}, 1, 1 \right) \equiv (x^c, y^c, z^c, z^c)\]

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
\end{bmatrix}
\]

In matrix form, this gives:

\[
\begin{bmatrix}
x^c \\
y^c \\
z^c \\
1 \\
\end{bmatrix}
\]

Note:
This matrix represents a projective transformation
Taxonomy of Projections

Planar geometric projections

Parallel

Orthographic
 - Top (plan)
 - Front elevation
 - Side elevation

Axonometric
 - Isometric

Oblique
 - Cabinet

Perspective

One-point
 - Cavalier

Two-point
 - Other

Three-point
 - Other

FVFHP Figure 6.10
Classical Projections

Front elevation Elevation oblique Plan oblique

Isometric One-point perspective Three-point perspective

Angel Figure 5.3
Perspective vs. Parallel

• Perspective projection
 ✓ Size varies inversely with distance - looks realistic
 ✓ Angles are preserved on faces parallel to the view plane
 ❌ Distance are not preserved
 ❌ Only parallel lines that are parallel to the view plane remain parallel

• Parallel projection
 ✓ Good for exact measurements
 ✓ Parallel lines remain parallel
 ✓ Angles and distance are preserved on faces parallel to the view plane
 ❌ Less realistic looking
Transformations

\((x, y, z)\)

- 3D Object Coordinates
- Modeling Transformation
- 3D World Coordinates
- Viewing Transformation
- 3D Camera Coordinates
- Projection Transformation
- 2D Screen Coordinates
- Window-to-Viewport Transformation
- 2D Image Coordinates

Window-to-Viewport Transformation

\[V = \begin{bmatrix} 1 & 0 & v_x^1 \\ 0 & 1 & v_y^1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ \frac{v_x^2 - v_x^1}{w_x^2 - w_x^1} & 0 & 0 \\ \frac{v_y^2 - v_y^1}{w_y^2 - w_y^1} & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & -w_x^1 \\ 0 & 1 & -w_y^1 \\ 0 & 0 & 1 \end{bmatrix} \]
3D Rendering Pipeline (for direct illumination)

\((x, y, z)\)

- Modeling Transformation
 - 3D Object Coordinates
- Viewing Transformation
 - 3D World Coordinates
- Projection Transformation
 - 3D Camera Coordinates
- Window-to-Viewport Transformation
 - 2D Screen Coordinates
 - 2D Image Coordinates

\((x', y')\)
Transformations

3D Geometric Primitives

- Modeling Transformation
- Viewing Transformation
- Lighting
- Projection Transformation
- Clipping
- Scan Conversion

Image

\[I = I_E + \sum_L \left[K_A \cdot I_L^A + \left(K_D \cdot \langle \vec{N}, \vec{L} \rangle + K_S \cdot \langle \vec{V}, \vec{R} \rangle^n \right) \cdot I_L \right] \]

3D Model

Viewer

\[\vec{N}, \vec{L}_1, \vec{L}_2 \]

2D Screen
Transformations

3D Geometric Primitives

Modeling Transformation

Viewing Transformation

Lighting

Projection Transformation

Clipping

Scan Conversion

Image

Vertex processing

- Originally, this was processing was fixed
- On modern cards this can be programmed in the vertex shader