3D Rendering and Ray Casting

Michael Kazhdan

(601.457/657)

HB Ch. 13.7, 14.6
FvDFH 15.5, 15.10
Rendering

- Generate an image from geometric primitives

Geometric Primitives (3D) \[\rightarrow\] Rendering \[\rightarrow\] Raster Image (2D)
3D Rendering Example

What issues must be addressed by a 3D rendering system?
Overview

- 3D scene representation
- 3D viewer representation
- What do we see?
- How does it look?
Overview

- 3D scene representation
- 3D viewer representation
- What do we see?
- How does it look?

How is the 3D scene described in a computer?
3D Scene Representation

- Scene is usually approximated by 3D primitives
 - Point
 - Line segment
 - Polygon
 - Polyhedron
 - Curved surface
 - Solid object
 - etc.
3D Point

• Specifies a location
3D Point

- Specifies a location
 - Represented by three coordinates
 - Infinitely small

```c
struct Point3D {
    float x, y, z;
};
```

\[(x, y, z)\]
3D Vector

• Specifies a direction and a magnitude
3D Vector

- Specifies a direction and a magnitude
 - Represented by three coordinates
 - Magnitude $||\mathbf{v}|| = \sqrt{d_x^2 + d_y^2 + d_z^2}$
 - Has no location

```c
struct Vector3D {
    float dx, dy, dz;
};
```

$\mathbf{v} = (d_x, d_y, d_z)$
3D Vector

• Specifies a direction and a magnitude
 ◦ Represented by three coordinates
 ◦ Magnitude $\|\vec{v}\| = \sqrt{dx^2 + dy^2 + dz^2}$
 ◦ Has no location

• Dot product of two 3D vectors
 ◦ $\langle \vec{v}_1, \vec{v}_2 \rangle = dx_1 \cdot dx_2 + dy_1 \cdot dy_2 + dz_1 \cdot dz_2$
 ◦ $\langle \vec{v}_1, \vec{v}_2 \rangle = \|\vec{v}_1\| \cdot \|\vec{v}_2\| \cdot \cos \theta$

• Cross product of two 3D vectors
 ◦ $\vec{v}_1 \times \vec{v}_2 = \text{Vector normal to } \nu_1 \text{ and } \nu_2$
 ◦ $\|\vec{v}_1 \times \vec{v}_2\| = \|\vec{v}_1\| \cdot \|\vec{v}_2\| \cdot \sin \theta$
Cross Product: Review

• Let \(\vec{v}_1 = \vec{v}_2 \times \vec{v}_3 \):
 - \(dx_1 = dy_2 \cdot dz_3 - dz_2 \cdot dy_3 \)
 - \(dy_1 = dz_2 \cdot dx_3 - dx_2 \cdot dz_3 \)
 - \(dz_1 = dx_2 \cdot dy_3 - dy_2 \cdot dx_3 \)

• \(\vec{v} \times \vec{w} = -\vec{w} \times \vec{v} \) (remember “right-hand” rule)

• We can show:
 - \(\vec{v} \times \vec{w} = ||\vec{v}|| \cdot ||\vec{w}|| \cdot \sin \theta \cdot \vec{n} \),
 where \(\vec{n} \) is the unit vector normal to \(\vec{v} \) and \(\vec{w} \)
 - \(\vec{v} \times \vec{v} = 0 \)
3D Line Segment

- Linear path between two points
3D Line Segment

• Use a linear combination of two points
 ◦ **Parametric representation:**
 \[p(t) = p_1 + t \cdot (p_2 - p_1), \quad (0 \leq t \leq 1) \]

```c
struct Segment3D {
    Point3D p1, p2;
};
```
3D Ray

- Line segment with one endpoint at infinity
 - Parametric representation:
 \[p(t) = p_1 + t \cdot \vec{v}, \quad (0 \leq t < \infty) \]

```c
struct Ray3D {
    Point3D p1;
    Vector3D v;
};
```
3D Line

- Line segment with both endpoints at infinity
 - Parametric representation:
 $$ p(t) = p_1 + t \cdot \vec{v}, \quad (-\infty < t < \infty) $$

```c
struct Line3D {
    Point3D p1;
    Vector3D v;
};
```
3D Plane

• A linear combination of three points

\[p_1, p_2, p_3 \]
3D Plane

- A linear combination of three points
 - Implicit representation:
 - \(\Phi(p) = ax + by + cz - d = 0 \)
 - \(\Phi(p) = \langle p, \vec{n} \rangle - d = 0 \), or
  ```
  struct Plane3D {
    Vector3D n;
    float d;
  };
  ```
 - \(\vec{n} \) is the plane normal
 - (May be) unit-length vector
 - Perpendicular to plane
 - \(d \) is the signed (weighted) distance of the plane from the origin.
3D Polygon

- Area “inside” a sequence of coplanar points
 - Triangle
 - Quadrilateral
 - Convex
 - Star-shaped
 - Concave
 - Self-intersecting

```c
struct Polygon3D {
    Point3D *points;
    int npoints;
};
```

Points are in counter-clockwise order

- Holes (use > 1 polygon struct)
3D Sphere

• All points at distance r from center point $c = (c_x, c_y, c_z)$

 ◦ Implicit representation:
 » $\Phi(p) = \|p - c\|^2 - r^2 = 0$

 ◦ Parametric representation:
 » $x(\phi, \theta) = r \cdot \cos \phi \cdot \sin \theta + c_x$
 » $y(\phi, \theta) = r \cdot \cos \phi \cdot \sin \theta + c_y$
 » $z(\theta, \phi) = r \cdot \sin \phi + c_z$

```
struct Sphere3D {
    Point3D center;
    float radius;
};
```
Other 3D primitives

- Cone
- Cylinder
- Ellipsoid
- Box
- Etc.
3D Geometric Primitives

• More detail on 3D modeling later in course
 ○ Point
 ○ Line segment
 ○ Polygon
 ○ Polyhedron
 ○ Curved surface
 ○ Solid object
 ○ etc.
Overview

- 3D scene representation
- 3D viewer representation
- What do we see?
- How does it look?

How is the viewing device described in a computer?
Camera Models

• The most common model is pin-hole camera
 ◦ All captured light rays arrive along paths toward focal point without lens distortion (everything is in focus)

Other models consider ...
 Depth of field
 Motion blur
 Lens distortion
Camera Parameters

- What are the parameters of a camera?
Camera Parameters

• Position
 ◦ Eye position: \texttt{Point3D eye}

• Orientation
 ◦ View direction: \texttt{Vector3D view}
 ◦ Up direction: \texttt{Vector3D up}

• Aperture
 ◦ Field of view angle: \texttt{float xFov, yFov}
 ◦ Film plane
 ◦ (View plane normal)
Other Models: Depth of Field

Close Focused

Distance Focused

P. Haeberli
Other Models: Motion Blur

- Mimics effect of open camera shutter
- Gives perceptual effect of high-speed motion
- Generally involves temporal super-sampling

Brostow & Essa
Traditional Pinhole Camera

- The film sits behind the pinhole of the camera.
- Rays come in from the outside, pass through the pinhole, and hit the film plane.
Traditional Pinhole Camera

- The film sits behind the pinhole of the camera.
- Rays come in from the outside, pass through the pinhole, and hit the film plane.

Photograph is upside down
Virtual Camera

- The film sits in front of the pinhole of the camera.
- Rays come in from the outside, pass through the film plane, and hit the pinhole.
Virtual Camera

- The film sits in front of the pinhole of the camera.
- Rays come in from the outside, pass through the film plane, and hit the pinhole.
Overview

• 3D scene representation
• 3D viewer representation

• Ray Casting
 ◦ Where are we looking?
 ◦ What do we see?
 ◦ How does it look?
Ray Casting

• For each sample ...
 ◦ **Where**: Construct ray from eye through view plane
 ◦ **What**: Find first surface intersected by ray through pixel
 ◦ **How**: Compute color sample based on surface radiance
Ray Casting

• Simple implementation:

```java
Image RayCast( Camera camera, Scene scene, int width, int height) {
    Image image = new Image(width, height);
    for (int i=0; i<width; i++) for (int j=0; j<height; j++) {
        Ray ray = ConstructRayThroughPixel(camera, i, j);
        Intersection hit = FindIntersection(ray, scene);
        image[i][j] = GetColor(hit);
    }
    return image;
}
```
Ray Casting

Where?

```java
Image RayCast( Camera camera , Scene scene , int width , int height)
{
    Image image = new Image( width , height );
    for( int i=0 ; i<width ; i++ ) for( int j=0 ; j<height ; j++ )
    {
        Ray ray = ConstructRayThroughPixel( camera , i , j );
        Intersection hit = FindIntersection( ray , scene );
        image[i][j] = GetColor( hit );
    }
    return image;
}
```
Constructing a Ray Through a Pixel

- Up direction
- Right
- Back
- p_0
- \vec{v}
- $p[i][j]$
The ray originates at \(p_0 \) (the position of the camera). So the equation for the ray is:

\[
\text{Ray}(t) = p_0 + t \cdot \vec{v}
\]
If the ray passes through the point $p[i][j]$, then the solution for \vec{v} is:

$$\vec{v} = \frac{p[i][j] - p_0}{\|p[i][j] - p_0\|}$$
If $p[i][j]$ represents the (i, j)-th pixel of the image, what is its position?
Constructing Ray Through a Pixel

- 2D Example: Side view of camera at p_0
 - Where is the i-th pixel, $p[i]$? ($i \in [0, \text{height}]$)

$\theta = \text{frustum half-angle (given), or field of view}$

$d = \text{distance to view plane (arbitrary = you pick)}$
Constructing Ray Through a Pixel

- **2D Example: Side view of camera at** p_0
 - Where is the i-th pixel, $p[i]$? ($i \in [0, \text{height})$)

 $\theta = \text{frustum half-angle (given), or field of view}$
 $d = \text{distance to view plane (arbitrary = you pick)}$

 $p_1 = p_0 + d \cdot \text{towards} - d \cdot \tan \theta \cdot \text{up}$
 $p_2 = p_0 + d \cdot \text{towards} + d \cdot \tan \theta \cdot \text{up}$
Constructing Ray Through a Pixel

- 2D Example: Side view of camera at p_0
 - Where is the i-th pixel, $p[i]$? ($i \in [0, \text{height})$)

$\theta = \text{frustum half-angle (given), or field of view}$

$d = \text{distance to view plane (arbitrary = you pick)}$

\[
p_1 = p_0 + d \cdot \text{towards} - d \cdot \tan \theta \cdot \text{up}
\]
\[
p_2 = p_0 + d \cdot \text{towards} + d \cdot \tan \theta \cdot \text{up}
\]

\[
p[i] = p_1 + \left(\frac{i + 0.5}{\text{height}}\right) \cdot (p_2 - p_1)
\]
Constructing Ray Through a Pixel

- 2D Example:

The ray passing through the i-th pixel is defined by:

$$\text{Ray}(t) = p_0 + t \cdot \mathbf{v}$$

- p_0: camera position
- \mathbf{v}: direction to the i-th pixel:
 $$\mathbf{v} = \frac{p[i] - p_0}{\lVert p[i] - p_0 \rVert}$$
- $p[i]$: i-th pixel location:
 $$p[i] = p_1 + \left(\frac{i + 0.5}{\text{height}} \right) \cdot (p_2 - p_1)$$

- p_1 and p_2 are the endpoints of the view plane:
 $$p_1 = p_0 + d \cdot \text{towards} - d \cdot \tan \theta \cdot \text{up}$$
 $$p_2 = p_0 + d \cdot \text{towards} + d \cdot \tan \theta \cdot \text{up}$$
Constructing Ray Through a Pixel

- Figuring out how to do this in 3D is assignment 2
Ray Casting

Where?

```
Image RayCast( Camera camera, Scene scene, int width, int height) {
    Image image = new Image( width, height );
    for( int i=0 ; i<width ; i++ ) for( int j=0 ; j<height ; j++ ) {
        Ray ray = ConstructRayThroughPixel( camera, i, j );
        Intersection hit = FindIntersection( ray, scene );
        image[i][j] = GetColor( hit );
    }
    return image;
}
```
Ray Casting

What?

```java
Image RayCast( Camera camera , Scene scene , int width , int height)
{
    Image image = new Image( width , height );
    for( int i=0 ; i<width ; i++ ) for( int j=0 ; j<height ; j++ )
    {
        Ray ray = ConstructRayThroughPixel( camera , i , j );
        Intersection hit = FindIntersection( ray , scene );
        image[i][j] = GetColor( hit );
    }
    return image;
}
```
Ray-Scene Intersection

- Intersections with geometric primitives
 - Sphere
 - Triangle
Ray-Sphere Intersection

Ray: $p(t) = p_0 + t \cdot \vec{v}$, \hspace{2mm} ($0 \leq t < \infty$)
Sphere: $\Phi(p) = \|p - c\|^2 - r^2 = 0$
Ray-Sphere Intersection

Ray: $p(t) = p_0 + t \cdot \vec{v}, \quad (0 \leq t < \infty)$
Sphere: $\Phi(p) = \|p - c\|^2 - r^2 = 0$

Substituting for $p(t)$, we get:
$\Phi(t) = \|p_0 - t \cdot \vec{v} - c\|^2 - r^2 = 0$

Solve quadratic equation:
$a \cdot t^2 + b \cdot t + c = 0$
where:
$a = 1$
$b = 2\langle \vec{v}, p_0 - c \rangle$
$c = \|p_0 - c\|^2 - r^2$
Ray-Sphere Intersection

Ray: \(p(t) = p_0 + t \cdot \vec{v}, \ (0 \leq t < \infty) \)

Sphere: \(\Phi(p) = \|p - c\|^2 - r^2 = 0 \)

Substituting for \(p(t) \), we get:

\[\Phi(t) = \|p_0 - t \cdot \vec{v} - c\|^2 - r^2 = 0 \]

Solve quadratic equation:

\[a \cdot t^2 + b \cdot t + c = 0 \]

where:

\[a = 1 \]
\[b = 2 \cdot \vec{v}, \ p_0 - c \]
\[c = p_0 - c^2 - r^2 \]

Generally, there are two solutions to the quadratic equation, giving rise to points \(p \) and \(p' \).

Want to return the first positive hit.
Ray-Sphere Intersection

- Need normal vector at intersection for lighting calculations:

$$\mathbf{n} = \frac{\mathbf{p} - \mathbf{c}}{||\mathbf{p} - \mathbf{c}||}$$
Ray-Scene Intersection

- Intersections with geometric primitives
 - Sphere
 - Triangle
Ray-Triangle Intersection

- First, intersect ray with plane
- Then, check if point is inside triangle
Ray-Plane Intersection

Ray: \(p(t) = p_0 + t \cdot \vec{v}, \quad (0 \leq t < \infty) \)
Plane: \(\Phi(p) = \langle p, \vec{n} \rangle - d = 0 \)

Substituting for \(P \), we get:
\[\Phi(t) = \langle p_0 + t \cdot \vec{v}, \vec{n} \rangle - d = 0 \]

Solution:
\[t = -\frac{\langle p_0, \vec{n} \rangle - d}{\langle \vec{v}, \vec{n} \rangle} \]

What are the implications of \(\langle \vec{v}, \vec{n} \rangle = 0 \)?
Ray-Triangle Intersection I

- Check if point is inside triangle algebraically:
 - Generate planes through the ray source and each edge
 - Check if the point of intersection is above each of these planes

For each plane
\[
\mathbf{v}_1 = \mathbf{T}_1 - \mathbf{p}_0 \\
\mathbf{v}_2 = \mathbf{T}_2 - \mathbf{p}_0 \\
\mathbf{n}_1 = \mathbf{v}_2 \times \mathbf{v}_1
\]
if \((\mathbf{p} - \mathbf{p}_0, \mathbf{n}_1) < 0\)
return FALSE;
Ray-Triangle Intersection II

- Check if point is inside triangle parametrically

A point p is inside the triangle iff. it can be expressed as the weighted average of the corners:

$$ p = \alpha \cdot T_1 + \beta \cdot T_2 + \gamma \cdot T_3 $$

where:

$$ 0 \leq \alpha, \beta, \gamma \leq 1 $$

$$ \alpha + \beta + \gamma = 1 $$
Ray-Triangle Intersection II

• Check if point is inside triangle parametrically

Solve for α, β, γ such that:

$$ p = \alpha \cdot T_1 + \beta \cdot T_2 + \gamma \cdot T_3 $$

And

$$ \alpha + \beta + \gamma = 1 $$

Check if the point is in the triangle:

$$ 0 \leq \alpha, \beta, \gamma \leq 1 $$
Ray-Triangle Intersection II

• Check if point is inside triangle parametrically

In general, given $p \in \mathbb{R}^3$ and given three points $\{T_1, T_2, T_3\} \subset \mathbb{R}^3$ (in general position) we can solve for $\alpha, \beta, \gamma \in \mathbb{R}$ such that:

$$p = \alpha T_1 + \beta T_2 + \gamma T_3$$

If p is in the plane spanned by $\{T_1, T_2, T_3\}$:

$$\alpha + \beta + \gamma = 1$$

If p is inside the triangle with vertices $\{T_1, T_2, T_3\}$:

$$\alpha, \beta, \gamma \geq 0$$
Ray-Triangle Intersection II

- Check if point is inside triangle parametrically

In general, given \(p \in \mathbb{R}^3 \) and given three points \(\{T_1, T_2, T_3\} \subset \mathbb{R}^3 \) (in general position) we can solve for \(\alpha, \beta, \gamma \in \mathbb{R} \) such that:

\[
p = \alpha T_1 + \beta T_2 + \gamma T_3
\]

To get \(\alpha, \beta, \gamma \), solve the system:

\[
\begin{pmatrix}
T_1^x & T_2^x & T_3^x \\
T_1^y & T_2^y & T_3^y \\
T_1^z & T_2^z & T_3^z
\end{pmatrix}
\begin{pmatrix}
\alpha \\
\beta \\
\gamma
\end{pmatrix}
=
\begin{pmatrix}
p^x \\
p^y \\
p^z
\end{pmatrix}
\]
Ray-Triangle Intersection II

- Check if point is inside triangle parametrically

In general, given \(p \in \mathbb{R}^3 \) and given three points \(\{T_1, T_2, T_3\} \subset \mathbb{R}^3 \) (in general position) we can solve for \(\alpha, \beta, \gamma \in \mathbb{R} \) such that:

\[
p = \alpha T_1 + \beta T_2 + \gamma T_3
\]

This will fail if the vertices \(\{T_1, T_2, T_3\} \) lie in a plane through the origin.

To get \(\alpha, \beta, \gamma \), solve the system:

\[
\begin{pmatrix}
T_1^x & T_2^x & T_3^x \\
T_1^y & T_2^y & T_3^y \\
T_1^z & T_2^z & T_1^z
\end{pmatrix}
\begin{pmatrix}
\alpha \\
\beta \\
\gamma
\end{pmatrix}
=
\begin{pmatrix}
p^x \\
p^y \\
p^z
\end{pmatrix}
\]
Ray-Triangle Intersection II

• Check if point is inside triangle parametrically

In general, given \(p \in \mathbb{R}^3 \) and given three points \(\{T_1, T_2, T_3\} \subset \mathbb{R}^3 \) (in general position) we can solve for \(\alpha, \beta, \gamma \in \mathbb{R} \) such that:

\[
p = \alpha T_1 + \beta T_2 + \gamma T_3
\]

If \(p \) is in the plane spanned by \(\{T_1, T_2, T_3\} \) we can translate so that \(T_1 \) is at the origin and solve for \(\beta, \gamma \):

\[
\begin{pmatrix}
T_2^x - T_1^x & T_3^x - T_1^x \\
T_2^y - T_1^y & T_3^y - T_1^y \\
T_2^z - T_1^z & T_3^z - T_1^z
\end{pmatrix}
\begin{pmatrix}
\beta \\
\gamma
\end{pmatrix} =
\begin{pmatrix}
(p^x - T_1^x) \\
(p^y - T_1^y) \\
(p^z - T_1^z)
\end{pmatrix}
\]
Ray-Triangle Intersection II

• Check if point is inside triangle parametrically

In general, given \(p \in \mathbb{R}^3 \) and given three points \(\{T_1, T_2, T_3\} \subset \mathbb{R}^3 \) (in general position) we can solve for \(\alpha, \beta, \gamma \in \mathbb{R} \) such that:

\[
p = \alpha T_1 + \beta T_2 + \gamma T_3
\]

If \(p \) is in the plane spanned by \(\{T_1, T_2, T_3\} \), this is an over-constrained system but a solution exists since \(p \) is in the plane spanned by \(\{T_1, T_2, T_3\} \).

After solving for \(\beta \) and \(\gamma \), we can set:

\[
\alpha = 1 - \beta - \gamma
\]

This is an over-constrained system but a solution exists since \(p \) is in the plane spanned by \(\{T_1, T_2, T_3\} \).
Other Ray-Primitive Intersections

- **Cone, cylinder, ellipsoid:**
 - Similar to sphere

- **Box**
 - Intersect 3 front-facing planes, return closest

- **Convex polygon**
 - Find the intersection of the ray with the plane
 - Check that the intersection is above every triangle generated by the ray source and polygon edge.

- **Concave polygon**
 - Same plane intersection
 - More complex point-in-polygon test