Image Processing, Warping, and Sampling

Michael Kazhdan

(601.457/657)

HB Ch. 4.8
FvDFH Ch. 14.10
Outline

• Image Processing
 • Image Warping
 • Image Sampling
Image Processing

• What about the case when the modification that we would like to make to a pixel depends on the pixels around it?
 ○ Blurring
 ○ Edge Detection
 ○ Etc.
Multi-Pixel Operations

Stationary/Local Filtering

• In the simplest case, we define a mask of weights telling us how values at adjacent pixels should be combined to generate the new value.
Blurring

- To blur across pixels, define a mask:
 - Whose values are non-negative
 - Whose value is largest at the center pixel
 - Whose entries sum to one.

\[
\begin{bmatrix}
\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\
\frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\
\frac{1}{16} & \frac{2}{16} & \frac{1}{16}
\end{bmatrix}
\]

Original \[\rightarrow\] Blur
Blurring

Pixel(x,y): red = 36
 green = 36
 blue = 0

Filter = \[
\begin{bmatrix}
\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\
\frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\
\frac{1}{16} & \frac{2}{16} & \frac{1}{16}
\end{bmatrix}
\]
Blurring

Pixel(x,y):
- red = 36
- green = 36
- blue = 0

Filter:
\[
\begin{bmatrix}
\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\
\frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\
\frac{1}{16} & \frac{2}{16} & \frac{1}{16}
\end{bmatrix}
\]

<table>
<thead>
<tr>
<th></th>
<th>X - 1</th>
<th>X</th>
<th>X + 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y - 1</td>
<td>36</td>
<td>109</td>
<td>146</td>
</tr>
<tr>
<td>Y</td>
<td>32</td>
<td>36</td>
<td>109</td>
</tr>
<tr>
<td>Y + 1</td>
<td>32</td>
<td>36</td>
<td>73</td>
</tr>
</tbody>
</table>

Pixel(x,y).red and its red neighbors
Blurring

Original

New value for Pixel(x,y).red =

\[
\begin{align*}
(36 \times 1/16) &+ (109 \times 2/16) &+ (146 \times 1/16) \\
(32 \times 2/16) &+ (36 \times 4/16) &+ (109 \times 2/16) \\
(32 \times 1/16) &+ (36 \times 2/16) &+ (73 \times 1/16)
\end{align*}
\]

\[
\text{Filter} = \begin{bmatrix}
\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\
\frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\
\frac{1}{16} & \frac{2}{16} & \frac{1}{16}
\end{bmatrix}
\]

Pixel(x,y).red and its red neighbors
Blurring

New value for Pixel(x,y).red = 62.69

Filter = \[
\begin{bmatrix}
\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\
\frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\
\frac{1}{16} & \frac{2}{16} & \frac{1}{16}
\end{bmatrix}
\]

Pixel(x,y).red and its red neighbors

Original
Blurring

New value for Pixel(x,y).red = 63

Original

Blur

\[
\begin{bmatrix}
\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\
\frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\
\frac{1}{16} & \frac{2}{16} & \frac{1}{16}
\end{bmatrix}
\]
Blurring

- Repeat for each pixel and each color channel
- Keep source and destination separate to avoid “drift”.
- For boundary pixels, not all neighbors are used, and you need to normalize the mask so that the sum of the values is correct.
Blurring

• In general, the mask can have arbitrary size:
 ◦ We can express a smaller mask as a bigger one by padding with zeros.
Blurring

- In general, the mask can have arbitrary size:
 - We can have more non-zero entries to give rise to a wider blur.

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 \\
0 & 2 & 4 & 2 & 0 \\
0 & 1 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}/16 \quad \begin{bmatrix}
0 & 1 & 2 & 1 & 0 \\
1 & 2 & 4 & 2 & 1 \\
2 & 4 & 8 & 4 & 2 \\
1 & 2 & 4 & 2 & 1 \\
0 & 1 & 2 & 1 & 0
\end{bmatrix}/48
\]

Original | Narrow Blur | Wide Blur
Blurring

• A general way for defining the entries of an $n \times n$ mask is to use the values of a Gaussian:

$$\text{GaussianMask}[i][j] = e^{-\frac{d_i^2 + d_j^2}{2\sigma^2}}$$

○ σ equals the mask radius ($n/2$ for an $n \times n$ mask)
○ d_i is i’s horizontal distance from the center pixel
○ d_j is j’s vertical distance from the center pixel
○ Don’t forget to normalize!
Edge Detection

- An edge is a point in the image where the image is “far” from constant.
Edge Detection

- To find the edges in an image, define a mask:
 - Whose value is largest at the center pixel
 - Whose entries sum to zero.

- Edge pixels are those whose value is larger (on average) than those of its neighbors.

\[
\text{Filter} = \frac{1}{8} \begin{bmatrix}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1
\end{bmatrix}
\]
Edge Detection

Pixel(x,y): red = 36
 green = 36
 blue = 0

Filter = \[\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix} \]
Edge Detection

Original

Pixel\((x,y)\): red = 36
green = 36
blue = 0

<table>
<thead>
<tr>
<th>X - 1</th>
<th>X</th>
<th>X + 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Y - 1)</td>
<td>36</td>
<td>109</td>
</tr>
<tr>
<td>(Y)</td>
<td>32</td>
<td>36</td>
</tr>
<tr>
<td>(Y + 1)</td>
<td>32</td>
<td>36</td>
</tr>
</tbody>
</table>

Pixel\((x,y)\) red and its red neighbors

Filter = \[
\frac{1}{8} \begin{bmatrix}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1
\end{bmatrix}
\]
Edge Detection

Original

Pixel(x,y).red and its red neighbors

New value for Pixel(x,y).red =

\[(36 \times -1/8) + (109 \times -1/8) + (146 \times -1/8)\]
\[(32 \times -1/8) + (36 \times 1) + (109 \times -1/8)\]
\[(32 \times -1/8) + (36 \times -1/8) + (73 \times -1/8)\]

Filter = \[\frac{1}{8} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix} \]
Edge Detection

New value for Pixel\((x,y)\).red = -285/8

<table>
<thead>
<tr>
<th>Y-1</th>
<th>X-1</th>
<th>X</th>
<th>X+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>109</td>
<td>146</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Y</th>
<th>32</th>
<th>36</th>
<th>109</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y+1</td>
<td>32</td>
<td>36</td>
<td>73</td>
</tr>
</tbody>
</table>

Pixel\((x,y)\).red and its red neighbors

Filter = \(\frac{1}{8} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix} \)
Edge Detection

Original

New value for Pixel(x,y).red = 0

Pixel(x,y).red and its red neighbors

Filter = \[\frac{1}{8} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix} \]
Edge Detection

New value for Pixel(x,y).red = 0

Filter = $\frac{1}{8} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$

Note: Edge values are not colors, so we have to rescale/remap for visualization.
Outline

• Image Processing
• Image Warping
• Image Sampling
Image Warping

- Move pixels of image
 - Mapping
 - Resampling

Source image Warp Destination image
Overview

• Mapping
 ◦ Forward
 ◦ Inverse

• Resampling
 ◦ Point sampling
 ◦ Triangle filter
 ◦ Gaussian filter
Mapping

- Define transformation
 - Describe the destination \((x, y) = \Phi(u, v)\) for every location \((u, v)\) in the source
Example Mappings

• Scale by σ:
 $\Phi(u, v) = (\sigma u, \sigma v)$

Scale $\sigma = 0.8$
Example Mappings

- Rotate by θ degrees:
 \[\Phi(u, v) = (u \cos \theta - v \sin \theta, u \sin \theta + v \cos \theta) \]

Rotate $\theta = 30$
Example Mappings

- Shear in x by σ_x:
 - $\Phi(u, v) = (u + \sigma_x \cdot v, v)$

- Shear in y by σ_y:
 - $\Phi(u, v) = (u, v + \sigma_y \cdot u)$
Other Mappings

• Any function of u and v:
 $\Phi(u, v) = \ldots$

Fish-eye

“Swirl”

“Rain”
Image Warping Implementation I

- Forward mapping:

 \[
 \begin{align*}
 &\text{for(int } v=0 \text{ ; } v<v_{\text{max}} \text{ ; } v++) \\
 &\text{for(int } u=0 \text{ ; } u<u_{\text{max}} \text{ ; } u++) \\
 &\quad \text{float } (x,y) = \Phi(u,v); \\
 &\quad \text{dst}(x,y) = \text{src}(u,v);
 \end{align*}
 \]
Forward Mapping

- Iterate over source image
Forward Mapping – BAD!

- Iterate over source image

Multiple source pixels can map to same destination pixel

Rotate + Translate
Forward Mapping – BAD!

- Iterate over source image

Multiple source pixels can map to same destination pixel

Some destination pixels may not be covered
Image Warping Implementation II

• Inverse mapping:

```c
for(int y=0; y<ymax; y++)
    for(int x=0; x<xmax; x++)
        float (u,v) = \Phi^{-1}(x,y);
        dst(x,y) = src(u,v);
```

![Diagram of inverse mapping](image)

Source image Destination image
Reverse Mapping – GOOD!

- Iterate over destination image
 - Must resample source
 - May oversample, but much simpler!

\[\begin{align*}
 \text{Rotate} & \quad -30^\circ \\
 \text{Translate} &
\end{align*} \]
Resampling

- Evaluate source image at arbitrary \((u, v)\)

\((u, v)\) does not usually have integer coordinates

Source image Destination image
Overview

• Mapping
 ○ Forward
 ○ Inverse

• Resampling
 ○ Nearest Point Sampling
 ○ Bilinear Sampling
 ○ Gaussian Sampling
Nearest Point Sampling

• Take value at closest pixel:

\[
\text{int } iu = \text{floor}(u+0.5);
\]
\[
\text{int } iv = \text{floor}(v+0.5);
\]
\[
\text{dst}(x,y) = \text{src}(iu,iv);
\]
Bilinear Sampling

- Bilinearly interpolate four closest source pixels

\[\text{dst}(x, y) = \text{Weighted average of source at } (u_1, v_1), (u_2, v_1), (u_1, v_2), \text{ and } (u_2, v_2) \]
Linear Sampling

- Linearly interpolate two closest source pixels

 \[
 \text{dst}(x) = \text{linear interpolation of } u_1 \text{ and } u_2
 \]

\[
\begin{align*}
 u_1 &= \text{floor}(u) \\
 u_2 &= u_1 + 1 \\
 du &= u - u_1 \\
 \text{dst}(x) &= \text{src}(u_1)*(1-du) + \text{src}(u_2)*du
\end{align*}
\]
Bilinear Sampling

- Bilinearly interpolate four closest source pixels
 \[a = \text{linear interpolation of } \text{src}(u_1, v_1) \text{ and src}(u_2, v_1) \]
 \[b = \text{linear interpolation of } \text{src}(u_1, v_2) \text{ and src}(u_2, v_2) \]
 \[\text{dst}(x, y) = \text{linear interpolation of } a \text{ and } b \]

\[
\begin{align*}
 u_1 &= \text{floor}(u), \quad u_2 = u_1 + 1; \\
 v_1 &= \text{floor}(v), \quad v_2 = v_1 + 1; \\
 d_u &= u - u_1; \\
 a &= \text{src}(u_1, v_1) \cdot (1 - d_u) \\
 &+ \text{src}(u_2, v_1) \cdot (d_u); \\
 b &= \text{src}(u_1, v_2) \cdot (1 - d_u) \\
 &+ \text{src}(u_2, v_2) \cdot d_u; \\
 d_v &= v - v_1; \\
 \text{dst}(x, y) &= a \cdot (1 - d_v) + b \cdot d_v;
\end{align*}
\]
Bilinear Sampling

- Bilinearly interpolate four closest source pixels

 \[a = \text{linear interpolation of } \text{src}(u_1, v_1) \text{ and } \text{src}(u_2, v_1) \]

 \[b = \text{linear interpolation of } \text{src}(u_1, v_2) \text{ and } \text{src}(u_2, v_2) \]

 \[\text{dst}(x, y) = \text{linear interpolation of } a \text{ and } b \]

- Make sure to test that the pixels \((u_1, v_1), (u_2, v_2), (u_1, v_2), \) and \((u_2, v_1)\) are within the image.

\[
\begin{align*}
\text{ul} &= \text{floor}(u), \quad \text{u2} = \text{ul} + 1; \\
\text{vl} &= \text{floor}(v), \\
\text{du} &= u - \text{ul}; \\
\text{dv} &= v - \text{vl}; \\
a &= \text{src}(\text{ul}, \text{vl}) \times (1 - \text{du}) \\
 &+ \text{src}(\text{u2}, \text{vl}) \times \text{du}; \\
b &= \text{src}(\text{ul}, \text{v2}) \times (1 - \text{du}) \\
 &+ \text{src}(\text{u2}, \text{v2}) \times \text{du}; \\
\text{dst}(x, y) &= a \times (1 - \text{dv}) + b \times \text{dv};
\end{align*}
\]
Gaussian Sampling

- Compute weighted sum of pixel neighborhood:
 - The blending weights are the normalized values of a Gaussian function.
Filtering Methods Comparison

- Trade-offs
 - Jagged edges versus blurring
 - Computation speed

Images showing the results of Filtering Methods:
- Nearest
- Bilinear
- Gaussian
Image Warping Implementation

- Inverse mapping:

\[
\begin{align*}
&\text{for(int } y=0 ; y<y_{\text{max}} ; y++) \\
&\quad \text{for(int } x=0 ; x<x_{\text{max}} ; x++) \\
&\quad \text{float } (u,v) = \Phi^{-1}(x,y); \\
&\quad \text{dst}(x,y) = \text{resample_src}(u,v,w);
\end{align*}
\]
Image Warping Implementation

• Inverse mapping:

\[
\text{for(int } y=0 \; \; \text{; } y<y_{\text{max}} \; \; \text{; } y++ \;)}
\text{for(int } x=0 \; \; \text{; } x<x_{\text{max}} \; \; \text{; } x++ \;)}
\text{float } (u,v) = \Phi^{-1}(x,y);
\text{dst}(x,y) = \text{resample_src}(u,v,w);
\]

Source image \[\Phi\rightarrow\] Destination image

\((u,v)\) \[\Phi\rightarrow\] \((x,y)\)
Example: Scale

\[
\text{Scale}(\text{src, dst, } \sigma):\n\]

float \ w \leftarrow ?; \\
for(\text{int } y=0 ; y<y_{\text{max}} ; y++) \\
\quad for(\text{int } x=0 ; x<x_{\text{max}} ; x++) \\
\quad \quad float (u,v) = (x,y) / \sigma; \\
\quad dst(x,y) = \text{resample}_\text{src}(u,v,w); \\
\]

\[
w = \frac{1}{\sigma}
\]
Example: Rotate

Rotate(src, dst, \theta):

float w \equiv 1;
for(int y=0 ; y<y_{max} ; y++)
 for(int x=0 ; x<x_{max} ; x++)
 float (u,v) = (x \cos(-\theta) - y \sin(-\theta) ,
 x \sin(-\theta) + y \cos(-\theta));
 dst(x,y) = resample_src(u,v,w);

w = 1

x = u \cos \theta - v \sin \theta
y = u \sin \theta + v \cos \theta
Example: Fun

Swirl(src, dst, 𝜃):

float w ≈ ?;
for(int y=0 ; y<ymax ; y++)
 for(int x=0 ; x<xmax ; x++)
 float (u,v) =
 rot((xc,yc),(x,y),
 dist((x,y)-(xc,yc))*theta);
 dst(x,y) = resample_src(u,v,w);
Outline

• Image Processing
• Image Warping
• Image Sampling
Sampling Questions

• How should we sample an image:
 ◦ Nearest Point Sampling?
 ◦ Bilinear Sampling?
 ◦ Gaussian Sampling?
 ◦ Something Else?
Image Representation

What is an image?

An image is a discrete collection of pixels, each representing a sample of a continuous function.

Continuous image

Digital image
Sampling

Let’s look at a 1D example:

Continuous Function Discrete Samples
Sampling

At in-between positions, values are undefined.

How do we determine the value of a sample?

We need to reconstruct a continuous function, turning a collection of discrete samples into a 1D function that we can sample at arbitrary locations.
Nearest Point Sampling

The value at a point is the value of the closest discrete sample.
Nearest Point Sampling

The value at a point is the value of the closest discrete sample.

The reconstruction:
- Interpolates the samples
- Is not continuous

Reconstructed Function Discrete Samples
Bilinear Sampling

The value at a point is the (bi)linear interpolation of the two surrounding samples.

Reconstructed Function Discrete Samples
Bilinear Sampling

The value at a point is the (bi)linear interpolation of the two surrounding samples.

The reconstruction:

✓ Interpolates the samples
× Is not smooth
Gaussian Sampling

The value at a point is the Gaussian average of the surrounding samples.
Gaussian Sampling

The value at a point is the Gaussian average of the surrounding samples.

The reconstruction:
- Does not interpolate
- Is smooth
Image Sampling

Typically this is done in two steps:

1. Reconstruct a continuous function from input samples.
2. Sample a continuous function at a fixed resolution.

Challenge:

Reconstruction is an under-constrained problem.

⇒ Need to define what makes a good reconstruction.
Image Sampling

Typically this is done in two steps:
1. Reconstruct a continuous function from input samples.
2. Sample a continuous function at a fixed resolution.

Challenge:
Reconstruction is an under-constrained problem.
⇒ Need to define what makes a good reconstruction.

Key Idea:
Of all possible reconstructions, we want the one that is smoothest (has lowest frequencies).
Signal processing helps us formulate this precisely.
Fourier Analysis

- Fourier analysis provides a way for expressing (or approximating) any signal as a sum of scaled and shifted cosine functions.

The Building Blocks for the Fourier Decomposition
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

\[
f_0(\theta) = a_0 \cdot \cos(0 \cdot (\theta + \phi_0))
\]

0th Order Component
Fourier Analysis

• As higher frequency components are added to the approximation, finer details are captured.

Initial Function

\[f_1(\theta) = a_1 \cdot \cos(1 \cdot (\theta + \phi_1)) \]

1st Order Component
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

\[f_2(\theta) = a_2 \cdot \cos(2 \cdot (\theta + \phi_2)) \]
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

\[f_3(\theta) = a_3 \cdot \cos(3 \cdot (\theta + \phi_3)) \]

3rd Order Component
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

\[f_4(\theta) = a_4 \cdot \cos(4 \cdot (\theta + \phi_4)) \]

Initial Function

4th Order Approximation

3rd Order Approximation

4th Order Component
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

\[f_5(\theta) = a_5 \cdot \cos(5 \cdot (\theta + \phi_5)) \]

5th Order Component
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

\[
f_6(\theta) = a_6 \cdot \cos(6 \cdot (\theta + \phi_6))
\]

6th Order Component
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

\[f(\theta) = a_7 \cdot \cos(7 \cdot (\theta + \phi_8)) \]

6th Order Approximation

7th Order Approximation

Initial Function
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

\[f_8(\theta) = a_8 \cdot \cos(8 \cdot (\theta + \phi_8)) \]

8th Order Component
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

\[
f_9(\theta) = a_9 \cdot \cos(9 \cdot (\theta + \phi_9))
\]

9th Order Component
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

\[f_{10}(\theta) = a_{10} \cdot \cos(10 \cdot (\theta + \phi_{10})) \]

Initial Function

9th Order Approximation

10th Order Approximation

10th Order Component
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

Initial Function

\[f(\theta) \]

11^{th} Order Approximation

\[f_{11}(\theta) = a_{11} \cdot \cos(11 \cdot (\theta + \phi_{11})) \]

10^{th} Order Approximation

11^{th} Order Component
Fourier Analysis

• As higher frequency components are added to the approximation, finer details are captured.

\[f_{12}(\theta) = a_{12} \cdot \cos(12 \cdot (\theta + \phi_{12})) \]

12th Order Component
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

Initial Function

13\text{th} Order Approximation

\begin{align*}
\dot{\theta} &= a_{13} \cdot \cos(13 \cdot (\theta + \phi_{13})) \\
13\text{th Order Component}
\end{align*}
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

\[f_{14}(\theta) = a_{14} \cdot \cos(14 \cdot (\theta + \phi_{14})) \]

14th Order Component
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

\[f_{15}(\theta) = a_{15} \cdot \cos(15 \cdot (\theta + \phi_{15})) \]

15th Order Component
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

\[f_{16}(\theta) = a_{16} \cdot \cos(16 \cdot (\theta + \phi_{16})) \]

16th Order Component
Fourier Analysis

- Combining all of the frequency components together, we get the initial function:

\[f(\theta) = \sum_{k=0}^{\infty} f_k(\theta) = \sum_{k=0}^{\infty} a_k \cdot \cos(k(\theta + \phi_k)) \]

- \(a_k \): amplitude of the \(k^{th} \) frequency component
- \(\phi_k \): shift of the \(k^{th} \) frequency component
Question

• As higher frequency components are added to the approximation, finer details are captured.

• If we have n frequencies, how many samples can we fit?
Question

- As higher frequency components are added to the approximation, finer details are captured.
- If we have n frequencies, how many samples can we fit?

Each frequency component has two degrees of freedom:
- Amplitude
- Shift

With n frequencies we can fit $2n$ samples.
Sampling Theorem

Shannon’s Theorem:
A signal can be reconstructed from its samples, if the original signal has no frequencies above $1/2$ the sampling rate -- a.k.a. the Nyquist Frequency.

Terminology:
- A signal is *band-limited* if its highest non-zero frequency is bounded.
- The frequency is called the *bandwidth*.
- The minimum sampling rate for band-limited function is called the *Nyquist rate* (twice the bandwidth).
Image Sampling

1. To reconstruct the continuous function from \(m \) samples, we can find the unique function of frequency \(m/2 \) that interpolates the values.

2. Why don’t we just evaluate this function at the \(n \) sample positions?

If \(n < m \) we sample below the Nyquist rate!
Aliasing

- When a high-frequency signal is sampled with insufficiently many samples, it can be perceived as a lower-frequency signal. This masking of higher frequencies as lower ones is referred to as **aliasing**.
Aliasing

- When a high-frequency signal is sampled with insufficiently many samples, it can be perceived as a lower-frequency signal. This masking of higher frequencies as lower ones is referred to as aliasing.
Aliasing

• When a high-frequency signal is sampled with insufficiently many samples, it can be perceived as a lower-frequency signal. This masking of higher frequencies as lower ones is referred to as **aliasing**.
Aliasing

- When a high-frequency signal is sampled with insufficiently many samples, it can be perceived as a lower-frequency signal. This masking of higher frequencies as lower ones is referred to as aliasing.
Temporal Aliasing

- Artifacts due to limited temporal resolution

10 fps
Temporal Aliasing

- Artifacts due to limited temporal resolution

![Diagram showing differences between 10 fps and 25 fps.]
Temporal Aliasing

- Artifacts due to limited temporal resolution
Temporal Aliasing

• Artifacts due to limited temporal resolution
Temporal Aliasing

- Artifacts due to limited temporal resolution
Temporal Aliasing

- Artifacts due to limited temporal resolution
Sampling

• There are two problems:
 ○ You don’t have enough samples to correctly reconstruct your high-frequency information
 ○ You corrupt the low-frequency information because the high-frequencies mask themselves as lower ones.