Computer Graphics
(600.457/657)

Prof. Misha Kazhdan
misha@cs.jhu.edu
Outline

• Introduction
• Syllabus
• Coursework
• Miscellaneous
Introduction: What is CG?

- 2D image processing
- 3D object representation & manipulation
- Simulating physical processes & materials
- Animating any of the above
Introduction: What is CG?

2D image processing

- 3D object representation & manipulation
- Simulating physical processes & materials
- Animating any of the above
Introduction: What is CG?

- 2D image processing
- 3D object representation & manipulation
 - Simulating physical processes & materials
 - Animating any of the above

“Incredibles 2” Disney / Pixar
Introduction: What is CG?

- 2D image processing
- 3D object representation & manipulation
- Simulating physical processes & materials
- Animating any of the above

Gringold et al. 2004
Introduction: What is CG?

• 2D image processing
• 3D object representation & manipulation
• Simulating physical processes & materials

Animating any of the above (4D)

Team Fortress 2: Meet the Heavy, Valve
Introduction: What is CG?

“You know it when you see it…”

http://www.creativecrash.com/tutorials/
Introduction: What is CG?

“You know it when you see it… maybe.”

http://www.creativecrash.com/tutorials/
Introduction: Applications

- Entertainment
- Computer Aided Design
- Scientific Visualization
- Training & Education
Introduction: Applications

Entertainment

• Computer Aided Design
• Scientific Visualization
• Training & Education

“How to Train Your Dragon 2”
DreamWorks

“Gears of War 4”
The Coalition
Introduction: Applications

- Entertainment
- Computer Aided Design
- Scientific Visualization
- Training & Education

Completely virtual model built in 3D:
- Shorten the development period
- Shorten the learning curve
Introduction: Applications

- Entertainment
- Computer Aided Design
- Scientific Visualization
- Training & Education

Neutron Star Collision
Courtesy of David Bock

Aspirin in RasMol
Courtesy of Michael Friendly

The Visible Human
Courtesy of NLM

Flow Visualization
Roettger et al.
Introduction: Applications

- Entertainment
- Computer Aided Design
- Scientific Visualization

Training & Education

Image courtesy of Agrawala et al.
Outline

• Introduction
• Syllabus
• Coursework
• Miscellaneous
Syllabus

- Image Processing (2D)
- Ray Tracing (3D)
- Rendering (3D)
- Modeling (3D)
- Animation (4D)
Syllabus

• Image Processing
 ◦ Quantization and Dithering
 ◦ Sampling
 ◦ Filters
 ◦ Warping, Morphing, and Compositing
Syllabus

• Ray Tracing
 ◦ Cameras
 ◦ Primitives
 ◦ Lights
 ◦ Spatial Data Structures
 ◦ Reflection, Transparency and Refraction

• Rendering
 ◦ Coordinate Systems and Modeling Transformations
 ◦ Viewing transformations
 ◦ Shading
 ◦ Textures
 ◦ Visibility
 ◦ OpenGL
Syllabus

• Modeling
 ◦ Triangles
 ◦ Splines
 ◦ Subdivision Surfaces
 ◦ Procedural Models
 ◦ Point Based Models

• Animation
 ◦ Key-Framing
 ◦ Kinematics
 ◦ Dynamics
Outline

• Introduction
• Syllabus
• Coursework
• Miscellaneous
Coursework

• NB: Lots of work!
• Exams (30%)
• Programming assignments (60%)
• Class participation (10%)
Coursework

• NB: Lots of work!

Exams (30%)
 ◦ Two exams
 ◦ Absolutely no excuses will be accepted for missing the exams. Not taking the exam at the scheduled time = 0!

• Programming assignments (60%)

• Class participation (10%)
Coursework

• NB: Lots of work!

• Exams (30%)

Programming assignments (60%)
 ◦ Image Processing (15%)
 ◦ Ray Tracing (15%)
 ◦ OpenGL Rendering (15%)
 ◦ Animation (15%)

• Class participation (10%)
Coursework

• NB: Lots of work!

• Exams (30%)

Programming assignments (60%)
 ○ Knowledge of C/C++ assumed!
 ○ Must be turned in by 23:59 on due date
 ○ 5 late days (combined)
 ○ Notify TA in your readme if you use a late day
 ○ Otherwise, late assignments receive NO credit

• Class participation (10%)
Coursework: Collaboration Policy

• You must write your own code
• You must reference sources of ideas/code

It’s okay to:
 ◦ Discuss ideas with other students
 ◦ Get ideas from books, web sites, etc.
 ◦ Get “support code” from books, web, etc.
 » REFERENCE IT

It is not okay to:
 ◦ Share code with other students
 ◦ Copy code from other students
 ◦ Use ideas or code from other sources without attribution
Coursework

• NB: Lots of work!

• Exams (30%)

Programming assignments (60%)

• Class participation (10%)

Bottom line:
If you don’t LOVE programming, don’t take this class!
Coursework

• NB: Lots of work!
• Exams (30%)
• Programming assignments (60%)

Class participation (10%)
Outline

• Introduction
• Syllabus
• Coursework
• Miscellaneous
Miscellaneous

• Course web page:
 ◦ http://www.cs.jhu.edu/~misha/Fall18

• Piazza page:
 ◦ http://piazza.com/jhu/fall2018/600457657

• No required text book.
 ◦ Additional reading:
 » *Computer Graphics: Principles and Practice in C*
 Foley, van Dam, Feiner, and Hughes
 » *Computer Graphics, C Version*
 Hearn and Baker
 » *OpenGL Programming Guide: The Official Guide to Learning OpenGL*
 Neider, Davis, and Woo
 » *Fundamentals of Computer Graphics*
 Shirley

• Will **not** cover GPU programming (e.g. shaders)
Miscellaneous

• Teaching/Course Assistants:
 ◦ Sing Chun Lee
 ◦ Steve Zhao

• Office hours:
 ◦ Mine: Monday 2:00 – 3:00 @ Malone 229
 ◦ Sing Chun’s: TBD
 ◦ Steve’s: TBD

• Keeping in touch:
 ◦ Email: cs457@cs.jhu.edu
 ◦ Note:
 » Do not send code snippets.
 » Do not ask us if your implementation is correct.
Miscellaneous

Assignment 1:
- Image Processing
- Due September 27 @ 11:59 pm
- Even if you won’t start working on the code until later, download it and try compiling ASAP to make sure that things are correctly set up on your system.