Quaternions and Exponentials

Michael Kazhdan

(601.457/657)
Announcements

• OpenGL review II:
 ◦ Today at 9:00pm, Malone 228

• This week's graphics reading seminar:
 ◦ Today 2:00-3:00pm, my office
 ◦ "Skinning with Dual Quaternions"
Recall

We saw two different methods for interpolating/approximating between rotations:

- **Normalization**: (SVD) Blend as 3×3 matrices and then map to the closest rotation.
- **Parameterization**: (Euler Angles) Compute the parameter values, blend those, and then evaluate at the blended values.
Overview

• Cross Products and (Skew) Symmetric Matrices
• Quaternions
• The Exponential Map
Cross Product

Given 3D vectors \(u = (u_1, u_2, u_3) \) and \(v = (v_1, v_2, v_3) \) the cross product of \(u \) and \(v \) is:

\[
u \times v = \begin{pmatrix}
u_2v_3 - u_3v_2 \\
u_3v_1 - u_1v_3 \\
u_1v_2 - u_2v_1
\end{pmatrix}
\]

Properties:

- The cross product is orthogonal to both \(u \) and \(v \).
- The vectors \(u, v, u \times v \) align with the right hand rule.
- The length of the cross product is equal to the area of the parallelogram defined by \(u \) and \(v \).
- \(u \times v = -v \times u \)
- \(u \times (v + w) = u \times v + u \times w \)
- \((tu) \times v = t(u \times v) \)
(Skew) Symmetric Matrices

A matrix M is symmetric if:

$$M_{ij} = M_{ji} \iff M = M^t$$

A matrix M is skew-symmetric if:

$$M_{ij} = -M_{ji} \iff M = -M^t$$

(Skew) Symmetric matrices are closed under addition and scaling:

- If $A = A^t$ and $B = B^t$, then $(A + B) = (A + B)^t$.
- If $A = A^t$ then $(\alpha A) = (\alpha A)^t$.
- If $A = -A^t$ and $B = -B^t$, then $(A + B) = -(A + B)^t$.
- If $A = -A^t$ then $(\alpha A) = -(\alpha A)^t$.
Overview

• Cross Products and (Skew) Symmetric Matrices
• Quaternions
• The Exponential Map
Quaternions

Quaternions are extensions of complex numbers, with three imaginary values instead of one:

\[a + ib + jc + kd \]

Like the complex numbers, we can add quaternions together by summing the individual components:

\[
\begin{align*}
(a_1 + ib_1 + jc_1 + kd_1) \\
+ (a_2 + ib_2 + jc_1 + kd_2)
\end{align*}
\]

\[= (a_1 + a_2) + i(b_1 + b_2) + j(c_1 + c_2) + k(d_1 + d_2) \]
Quaternions

Quaternions are extensions of complex numbers, with three imaginary values instead of one:
\[a + ib + jc + kd \]

Like the imaginary component of complex numbers, squaring the components gives:
\[i^2 = j^2 = k^2 = -1 \]

However, the multiplication rules are more complex:
\[ij = k \quad ik = -j \quad jk = i \]
\[ji = -k \quad ki = j \quad kj = -i \]
Quaternions

Quaternions are extensions of complex numbers, with three imaginary values instead of one:

\[a + ib + jc + kd \]

Like the imaginary component of complex numbers, squaring the components gives:

\[i^2 = j^2 = k^2 = -1 \]

However, the multiplication rules are more complex:

\[
egin{align*}
ij &= k & ik &= -j & jk &= i \\
ji &= -k & ki &= j & kj &= -i
\end{align*}
\]

Note:

Multiplication of quaternions is not commutative – the result of the multiplication depends on the order in which it is done.
More generally, the product of two quaternions is:

\[
(a_1 + ib_1 + jc_1 + kd_1) \times (a_2 + ib_2 + jc_2 + kd_2) = (a_1a_2 - b_1b_2 - c_1c_2 - d_1d_2) \\
+i(a_1b_2 + a_2b_1 + c_1d_2 - c_2d_1) \\
+j(a_1c_2 + a_2c_1 - b_1d_2 + b_2d_1) \\
+k(a_1d_2 + a_2d_1 + b_1c_2 - b_2c_1)
\]

\[i^2 = j^2 = k^2 = -1\]

\[ij = k, \quad ik = -j, \quad jk = i\]

\[ji = -k, \quad ki = j, \quad kj = -i\]
Quaternions

As with complex numbers, the conjugate of a quaternion \(q = a + ib + jc + kd \) is:

\[
\bar{q} = a - ib - jc - kd
\]

As with complex numbers, the norm of a quaternion \(q = a + ib + jc + kd \) is:

\[
\|q\| = \sqrt{a^2 + b^2 + c^2 + d^2} = \sqrt{q\bar{q}}
\]

As with complex numbers, the reciprocal is defined by dividing the conjugate by the square norm:

\[
\frac{1}{q} = \frac{1}{q} \cdot \frac{\bar{q}}{\|q\|^2} = \frac{\bar{q}}{\|q\|^2}
\]
Quaternions

One way to express a quaternion is as a pair consisting of the real value and the 3D vector consisting of the imaginary components:

\[q = (\alpha, \vec{w}) \quad \text{with} \quad \alpha = a \quad \text{and} \quad \vec{w} = (b, c, d) \]

The advantage of this representation is that it is easier to express quaternion multiplication:

\[q_1 \cdot q_2 = (\alpha_1, \vec{w}_1) \cdot (\alpha_2, \vec{w}_2) \]
\[= (\alpha_1 \cdot \alpha_2 - \langle \vec{w}_1, \vec{w}_2 \rangle, \alpha_1 \cdot \vec{w}_2 + \alpha_2 \cdot \vec{w}_1 + \vec{w}_1 \times \vec{w}_2) \]

\[
q_1 \cdot q_2 = (a_1 a_2 - b_1 b_2 - c_1 c_2 - d_1 d_2) + i(a_1 b_2 + a_2 b_1 + c_1 d_2 - c_2 d_1) + j(a_1 c_2 + a_2 c_1 - b_1 d_2 + b_2 d_1) + k(a_1 d_2 + a_2 d_1 + b_1 c_2 - b_2 c_1)
\]
Quaternions

We can also think of points in 3D as (purely imaginary) quaternions:

\[(x, y, z) \rightarrow ix + jy + kz = (0, \overrightarrow{w})\]

Given a unit quaternion \(q\) and an imaginary quaternion (3D point) \(p\), consider the map:

\[q(p) = qpq\]
Quaternions

\[q(p) = qp\bar{q} \]

Claim:

1. The map takes 3D points to 3D points

\[
q(p) = (\alpha_q, \vec{w}_q)(0, \vec{w}_p)(\alpha_q, -\vec{w}_q) \\
= (-\langle \vec{w}_q, \vec{w}_p \rangle, \alpha_q \vec{w}_p + \vec{w}_q \times \vec{w}_p)(\alpha_q, -\vec{w}_q) \\
= (-\alpha_q \langle \vec{w}_q, \vec{w}_p \rangle + \alpha_q \langle \vec{w}_p, \vec{w}_q \rangle + \langle \vec{w}_q \times \vec{w}_p, \vec{w}_q \rangle, ...) \\
= (0, ...)
\]
Quaternions

\[q(p) = qp\bar{q} \]

Claim:

1. The map takes 3D points to 3D points
2. The map is linear

\[
q(a \cdot p_1 + b \cdot p_2) = q(a \cdot p_1 + b \cdot p_2)\bar{q} \\
= a \cdot qp_1\bar{q} + b \cdot qp_2\bar{q} \\
= a \cdot q(p_1) + b \cdot q(p_2)
\]
Quaternions

\[q(p) = qp\bar{q} \]

Claim:
1. The map takes 3D points to 3D points
2. The map is linear
3. The map is norm-preserving
 \[|q(p)| = |qp\bar{q}| \]
 \[= |q||p||\bar{q}| \]
 \[= |p| \]
 since \(q \) is a unit quaternion
Quaternions

\[q(p) = qp\overline{q} \]

Claim:
1. The map takes 3D points to 3D points
2. The map is linear
3. The map is norm-preserving

\[\downarrow \]

The map \(p \rightarrow qp\overline{q} \) is a rotation when \(q \) is a unit quaternion.
Quaternions and Rotations

If \(q = a + ib + jc + kd \) is a unit quaternion \((\|q\| = 1)\), we can associate \(q \) with the rotation:

\[
R(q) = \begin{pmatrix}
1 - 2c^2 - 2d^2 & 2bc - 2ad & 2bd + 2ac \\
2bc + 2ad & 1 - 2b^2 - 2d^2 & 2cd - 2ab \\
2bd - 2ac & 2cd + 2ab & 1 - 2b^2 - 2c^2 \\
\end{pmatrix}
\]

This has the property that:

\[
R(q_1 \cdot q_2) = R(q_1) \cdot R(q_2)
\]

Note that because all of the terms are quadratic, the rotation associated with \(q \) is the same as the rotation associated with \(-q\).
Quaternions and Rotations

If \(q = a + ib + jc + kd \) is a unit quaternion (\(\|q\| = 1 \)), we can associate \(q \) with the rotation:

\[
R(q) = \begin{pmatrix}
1 - 2c^2 - 2d^2 & 2bc - 2ad & 2bd + 2ac \\
2bc + 2ad & 1 - 2b^2 - 2d^2 & 2cd - 2ab \\
2bd - 2ac & 2cd + 2ab & 1 - 2b^2 - 2c^2
\end{pmatrix}
\]

Because \(q \) is a unit quaternion, we have:

\[
\|q\|^2 = \|(a, \vec{w})\|^2 = a^2 + \|\vec{w}\|^2 = 1
\]

Or equivalently, if we set \(\vec{w} \) to be a unit vector, there exists \(\theta \) such that:

\[
q = \left(\cos \frac{\theta}{2}, \sin \frac{\theta}{2} \vec{w} \right)
\]
Quaternions and Rotations

If $q = a + ib + jc + kd$ is a unit quaternion ($\|q\| = 1$), we can associate q with the rotation:

$$R(q) = \begin{pmatrix} 1 - 2c^2 - 2d^2 & 2bc - 2ad & 2bd + 2ac \\ 2bc + 2ad & 1 - 2b^2 - 2d^2 & 2cd - 2ab \\ 2bd - 2ac & 2cd + 2ab & 1 - 2b^2 - 2c^2 \end{pmatrix}$$

Because q is a unit quaternion, we have:

$$q = \begin{pmatrix} \cos \frac{\theta}{2}, \sin \frac{\theta}{2} \end{pmatrix} \vec{w}$$

It turns out that q corresponds to the rotation whose:

- axis of rotation is \vec{w}, and
- angle of rotation is θ.

Quaternions

Instead of blending matrices \(\{M_0, ..., M_{n-1}\} \) and then normalizing using SVD, we can blend the quaternions and then normalize them:

- For each \(M_i \), compute the quaternion rep. \((\alpha_i, \vec{w}_i) \)
Quaternions

Instead of blending matrices \(\{M_0, \ldots, M_{n-1}\} \) and then normalizing using SVD, we can blend the quaternions and then normalize them:

- For each \(M_i \), compute the quaternion rep. \((\alpha_i, \vec{w}_i)\)
- Interpolate/Approximate the quaternions:
Quaternions

Instead of blending matrices \(\{M_0, \ldots, M_{n-1}\} \) and then normalizing using SVD, we can blend the quaternions and then normalize them:

- For each \(M_i \), compute the quaternion rep. \((\alpha_i, \vec{w}_i)\)
- Interpolate/Approximate the quaternions:
 - Linear Interpolation:
 \[
 \alpha_i(t) = (1 - t)\alpha_i + t\alpha_{i+1} \\
 \vec{w}_i(t) = (1 - t)\vec{w}_i + t\vec{w}_{i+1}
 \]
Quaternions

Instead of blending matrices \(\{M_0, \ldots, M_{n-1}\} \) and then normalizing using SVD, we can blend the quaternions and then normalize them:

- For each \(M_i \), compute the quaternion rep. \((\alpha_i, \vec{w}_i)\)
- Interpolate/Approximate the quaternions:
 - Linear Interpolation
 - Catmull-Rom Interpolation:
 \[
 \alpha_i(t) = CR_0(t)\alpha_{k-1} + CR_1(t)\alpha_k + CR_2(t)\alpha_{k+1} + CR_3(t)\alpha_{k+2}
 \]
 \[
 \vec{w}_i(t) = CR_0(t)\vec{w}_{k-1} + CR_1(t)\vec{w}_k + CR_2(t)\vec{w}_{k+1} + CR_3(t)\vec{w}_{k+2}
 \]
Quaternions

Instead of blending matrices \(\{M_0, \ldots, M_{n-1}\} \) and then normalizing using SVD, we can blend the quaternions and then normalize them:

- For each \(M_i \), compute the quaternion rep. \((\alpha_i, \vec{w}_i)\)
- Interpolate/Approximate the quaternions:
 - Linear Interpolation
 - Catmull-Rom Interpolation
 - Uniform Cubic B-Spline Approximation:
 \[
 \alpha_i(t) = B_{0,3}(t)\alpha_{k-1} + B_{1,3}(t)\alpha_k + B_{2,3}(t)\alpha_{k+1} + B_{3,3}(t)\alpha_{k+2}
 \]
 \[
 \vec{w}_i(t) = B_{0,3}(t)\vec{w}_{k-1} + B_{1,3}(t)\vec{w}_k + B_{2,3}(t)\vec{w}_{k+1} + B_{3,3}(t)\vec{w}_{k+2}
 \]
Quaternions

Instead of blending matrices \(\{M_0, \ldots, M_{n-1}\}\) and then normalizing using SVD, we can blend the quaternions and then normalize them:

- For each \(M_i\), compute the quaternion rep. \((\alpha_i, \vec{w}_i)\)
- Interpolate/Approximate the quaternions:
 - Linear Interpolation
 - Catmull-Rom Interpolation
 - Uniform Cubic B-Spline Approximation

- Set the value of the in-between rotation to be the normalized quaternion:

\[
\Phi_i(t) = \frac{(\alpha_i(t), \vec{w}_i(t))}{\| (\alpha_i(t), \vec{w}_i(t)) \|}
\]
Quaternions

Instead of blending matrices \(\{M_0, ..., M_{n-1}\} \) and then normalizing using SVD, we can blend the quaternions and then normalize them:

- For each \(M_i \), compute the quaternion rep. \((\alpha_i, \vec{w}_i)\)
- Interpolate/Approximate the quaternions:

Note:
- Using SVD, we interpolated in the \((9 = 3 \times 3)\)-dimensional space of matrices and then normalized.
- With quaternions we interpolate in the 4-dimensional space of quaternions and normalize.

\[
\Phi_i(t) = \frac{\left(\alpha_i(t), \vec{w}_i(t)\right)}{\left\|\left(\alpha_i(t), \vec{w}_i(t)\right)\right\|}
\]
Quaternions

As with points on the circle/sphere, this type of interpolation/approximation has the limitation:

• Uniform sampling in quaternion space does not result in uniform sampling in rotation space.

\[\Phi(t) = (1 - t)p_0 + tp_1 \]

\[\tilde{\Phi}(t) = \frac{\Phi(t)}{||\Phi(t)||} \]
Quaternions

As with points on the circle/sphere, this type of interpolation/approximation has the limitation:

- Uniform sampling in quaternion space does not result in uniform sampling in rotation space.

Additionally, since $R(-q) = R(q)$ there are two different quaternions we can associate with a rotation, so the mapping is not well-defined.
Overview

- Cross Products and (Skew) Symmetric Matrices
- Quaternions
- The Exponential Map
Geodesics

Given a surface $S(u, v)$ a geodesic is a curve that is (locally) the shortest path between two points.

$$S(u, v) = (\cos u \cos v, \sin u, \cos u \sin v)$$
Geodesics

Given a manifold (a d-dimensional surface) a geodesic is a curve that is (locally) the shortest path between two points.
Tangent Spaces

Given a curve $C(t)$, the tangent line to the curve at a point $p_0 = C(t_0)$ is the line that most closely approximates the curve $C(t)$ at the point p_0.
Tangent Spaces

Given a curve \(C(t) \), the **tangent line** to the curve at a point \(p_0 = C(t_0) \) is the line that most closely approximates the curve \(C(t) \) at the point \(p_0 \).

This is the line through \(p_0 \) with direction \(C'(t_0) \).
Tangent Spaces

Given a surface $S(u, v)$ the tangent plane to the curve at a point $p_0 = S(u_0, v_0)$ is the plane that most closely approximates $S(u, v)$ at the point p_0.

$$S(u, v) = (\cos u \cos v, \sin u, \cos u \sin v)$$
Tangent Spaces

Given a surface \(S(u, v) \) the tangent plane to the curve at a point \(p_0 = S(u_0, v_0) \) is the plane that most closely approximates \(S(u, v) \) at the point \(p_0 \).

This is the plane through \(p_0 \), parallel to the plane spanned by:

\[
\left. \frac{\partial S(u,v)}{\partial u} \right|_{(u_0, v_0)} \quad \text{and} \quad \left. \frac{\partial S(u,v)}{\partial v} \right|_{(u_0, v_0)}
\]

\[
S(u, v) = (\cos u \cos v, \sin u, \cos u \sin v)
\]
Tangent Spaces

Given a manifold (a d-dimensional surface) the tangent space to the manifold at a point p_0 on the manifold is the d-dimensional plane that most closely approximates the manifold at the point p_0.
The Exponential Map

Given a curve $C(t)$, the exponential at $p_0 = C(t_0)$ is a map that sends points in the tangent space of p_0 to the curve $C(t)$.
The Exponential Map

Given a curve $C(t)$, the exponential at $p_0 = C(t_0)$ is a map that sends points in the tangent space of p_0 to the curve $C(t)$.

The distance along the curve of a point $\exp(p_0, \vec{v})$ from p_0 is equal to $\|\vec{v}\|$.
The Exponential Map

Given a surface $S(u, v)$, the exponential at the point $p_0 = S(u_0, v_0)$ is a map that sends points in the tangent plane of p_0 to the surface $S(u, v)$.
The Exponential Map

Given a surface $S(u, v)$, the exponential at the point $p_0 = S(u_0, v_0)$ is a map that sends points in the tangent plane of p_0 to the surface $S(u, v)$.

If we fix a vector \vec{w} in the tangent space of p_0, then the curve $\exp(p_0, t\vec{w})$ will be a geodesic, leaving p_0 in direction \vec{w} and will have length equal to $\|t\vec{w}\|$.
The Exponential Map

Given a surface $S(u, v)$, the **exponential** at the point $p_0 = S(u_0, v_0)$ is a map that sends points in the tangent plane of p_0 to the surface $S(u, v)$.

If we fix a vector \vec{w} in the tangent space of p_0, then the curve $\exp(p_0, t\vec{w})$ will be a geodesic, leaving p_0 in direction \vec{w} and will have length equal to $\|t\vec{w}\|$.
The Exponential Map

Given a surface $S(u, v)$, the exponential at the point $p_0 = S(u_0, v_0)$ is a map that sends points in the tangent plane of p_0 to the surface $S(u, v)$.

If we fix a vector \vec{w} in the tangent space of p_0, then the curve $\exp(p_0, t\vec{w})$ will be a geodesic, leaving p_0 in direction \vec{w} and will have length equal to $\|t\vec{w}\|$.
The Exponential Map

Given a surface $S(u, v)$, the exponential at the point $p_0 = S(u_0, v_0)$ is a map that sends points in the tangent plane of p_0 to the surface $S(u, v)$.

If we fix a vector \vec{w} in the tangent space of p_0, then the curve $\exp(p_0, t\vec{w})$ will be a geodesic, leaving p_0 in direction \vec{w} and will have length equal to $||t\vec{w}||$.
Given a surface $S(u, v)$, the exponential at the point $p_0 = S(u_0, v_0)$ is a map that sends points in the tangent plane of p_0 to the surface $S(u, v)$.

If we fix a vector \vec{w} in the tangent space of p_0, then the curve $\exp(p_0, t\vec{w})$ will be a geodesic, leaving p_0 in direction \vec{w} and will have length equal to $\|t\vec{w}\|$.
The Exponential Map

Given a surface $S(u, v)$, the exponential at the point $p_0 = S(u_0, v_0)$ is a map that sends points in the tangent plane of p_0 to the surface $S(u, v)$.

If we fix a vector \vec{w} in the tangent space of p_0, then the curve $\exp(p_0, t\vec{w})$ will be a geodesic, leaving p_0 in direction \vec{w} and will have length equal to $||t\vec{w}||$.
The Exponential Map

Given a manifold (a d-dimensional surface), the exponential at point p_0 on the manifold is a map that sends points in the tangent plane of p_0 to the manifold.

If we fix a vector \vec{w} in the tangent space of p_0, then the curve $\exp(p_0, t\vec{w})$ will be a geodesic, leaving p_0 in direction \vec{w} and will have length equal to $\|t\vec{w}\|$.
The Logarithm Map

For a point p_0 on a curve/surface/manifold, the logarithm is the inverse of the exponential, sending points on the curve/surface/manifold back into the tangent space of p_0.
The Exponential Map

Example:

Let C be the unit circle, the exponential map $\exp((1,0), t)$ is the map sending the point t to the point $(\cos t , \sin t)$.
The Exponential Map

Example:

Let C be the unit circle, the exponential map $\exp((1,0), t)$ is the map sending the point t to the point $(\cos t, \sin t)$.

Note:
The exponential map is many-to-one:

$$\exp((1,0), t) = \exp((1,0), t + 2k\pi)$$

so the logarithm is not unique.
The Exponential Map

Fact:

• Let $GL(n)$ be the space of $n \times n$ invertible matrices, $\exp(\text{Id.}, M)$ is the map sending an arbitrary matrix M to an invertible one.

• Let $SO(n)$ be the space of $n \times n$ rotation matrices, $\exp(\text{Id.}, M)$ is the map sending a skew-symmetric matrix M to a rotation.
The Exponential Map

How do we actually compute the exponential map?
The Exponential Map

How do we actually compute the exponential map?

It is difficult to find a closed form solution, but for matrices we can use a Taylor series approximation:

$$\exp(\text{Id}, A) = \text{Id} + A + \frac{1}{2!} A^2 + \cdots + \frac{1}{n!} A^n + \cdots$$

In a similar manner, we can define the logarithm:

$$\ln(\text{Id}, A) = (A - \text{Id}) - \frac{(A - \text{Id})^2}{2} + \cdots + (-1)^{n+1} \frac{(A - \text{Id})^n}{n} + \cdots$$
The Exponential Map

Properties:

• \(\exp(\text{Id.}, 0) = \text{Id.} \)

\[\frac{\partial \exp(\text{Id.}, tA)}{\partial t} \bigg|_{t=0} = A \]

• \(\exp(\text{Id.}, \ln(\text{Id.}, A)) = A \)

• \(\exp(\text{Id.}, A + B) = \exp(\text{Id.}, A) \cdot \exp(\text{Id.}, B) \)
 if and only if \(AB = BA \)

 \[\Rightarrow \exp(\text{Id.}, -A) = (\exp(\text{Id.}, A))^{-1} \]
 \[\Rightarrow \exp(\text{Id.}, \alpha A) = (\exp(\text{Id.}, A))^\alpha \]
Rotation Interpolation/Approximation

Given a collection of rotations \(\{M_0, \ldots, M_{n-1}\} \) we can generate a curve passing through/near the matrices in the following manner:

- For each \(M_i \), compute the logarithm \(\ln(\text{Id.}, M_i) \)
Rotation Interpolation/Approximation

Given a collection of rotations \(\{M_0, \ldots, M_{n-1}\} \) we can generate a curve passing through/near the matrices in the following manner:

- For each \(M_i \), compute the logarithm \(\ln(\text{Id.}, M_i) \)
- Interpolate/Approximate the logarithms:
Rotation Interpolation/Approximation

Given a collection of rotations \(\{M_0, ..., M_{n-1}\} \) we can generate a curve passing through/near the matrices in the following manner:

- For each \(M_i \), compute the logarithm \(\ln(\text{Id.}, M_i) \)
- Interpolate/Approximate the logarithms:
 - Linear Interpolation:
 \[
 LN_i(t) = (1 - t) \ln(\text{Id.}, M_i) + \ln(\text{Id.}, M_{i+1})
 \]
Rotation Interpolation/Approximation

Given a collection of rotations \(\{M_0, ..., M_{n-1}\} \) we can generate a curve passing through/near the matrices in the following manner:

- For each \(M_i \), compute the logarithm \(\ln(\text{Id.}, M_i) \)
- Interpolate/Approximate the logarithms:
 - Linear Interpolation:
 - Catmull-Rom Interpolation:

\[
LN_i(t) = CR_0(t) \ln(\text{Id.}, M_{k-1}) + CR_1(t) \ln(\text{Id.}, M_k) + CR_1(t) \ln(\text{Id.}, M_{k+1}) + CR_1(t) \ln(\text{Id.}, M_{k+2})
\]
Rotation Interpolation/Approximation

Given a collection of rotations \(\{M_0, \ldots, M_{n-1}\} \) we can generate a curve passing through/near the matrices in the following manner:

- For each \(M_i \), compute the logarithm \(\ln(\text{Id.}, M_i) \)
- Interpolate/Approximate the logarithms:
 - Linear Interpolation:
 - Catmull-Rom Interpolation:
 - Uniform Cubic B-Spline Approximation:

\[
LN_i(t) = B_{0,3}(t) \ln(\text{Id.}, M_{k-1}) + B_{1,3}(t) \ln(\text{Id.}, M_k) + B_{2,3}(t) \ln(\text{Id.}, M_{k+1}) + B_{3,3}(t) \ln(\text{Id.}, M_{k+2})
\]
Rotation Interpolation/Approximation

Given a collection of rotations \(\{M_0, \ldots, M_{n-1}\} \) we can generate a curve passing through/near the matrices in the following manner:

- For each \(M_i \), compute the logarithm \(\ln(\text{Id.}, M_i) \)
- Interpolate/Approximate the logarithms:
 - Linear Interpolation:
 - Catmull-Rom Interpolation:
 - Uniform Cubic B-Spline Approximation:
- Set the value of the in-between rotation to be the exponent of the blended logarithms:
 \[
 \Phi_i(t) = \exp(\text{Id.}, LN_i(t))
 \]
Rotation Interpolation/Approximation

Given a collection of rotations \(\{M_0, \ldots, M_{n-1}\} \) we can generate a curve passing through/near the matrices in the following manner:

- For each \(M_i \), compute the logarithm \(\ln(\text{Id.}, M_i) \)

Note:
Since the logarithm of rotations is a skew-symmetric matrix, and since skew-symmetric matrices are closed under addition and scaling, the weighted average \(LN_i(t) \) is also skew-symmetric, so its exponent has to be a rotation.

We are computing the exponential and logarithm relative to the identity. Is that the best choice?
Parameterization (Limitation)

Just because we move on a straight line (shortest path) between points in the parameter domain, doesn’t mean we move on a straight line (shortest path) between points in the space of rotations.
Parameterization (Limitation)

Just because we move on a straight line (shortest path) between points in the parameter domain, doesn’t mean we move on a straight line (shortest path) between points in the space of rotations.

In general, because the parameter domain is flat and the sphere is not, there is no map that will take all straight lines to shortest paths.

We don’t need a map that takes all straight lines to shortest path. We only need a map that takes all straight lines from a fixed starting point!
Parameterization (Limitation)

We can flatten the domain around the starting point so that straight lines from the center point become straight lines on our surface.

In practice, this creates a chicken-and-egg problem where we would like to change the tangent space as we move along the curve.
Parameterization (Limitation)

What happens if we just use the tangent space of the starting point to do the blending?

- Interpolating splines: The curve won’t be smooth.
- Approximating splines: The curve won’t be continuous.
Summary

In order to define in-between frames for an animation, we need to interpolate/approximate the transformations specified in the key-frames.

• For translation, we can just use splines

• For rotations, we need to ensure that the in-between transformations are also rotations:

 ○ Euler angles
 ○ Exponential map

 \[\text{In-between transformations are guaranteed to be rotations} \]

 ○ SVD
 ○ Quaternions

 \[\text{Normalize in-between transformations to turn them into the nearest rotations} \]