3D Object Representation

Michael Kazhdan

(601.457/657)
3D Objects

How can this object be represented in a computer?
3D Objects

This one?

H&B Figure 10.46
3D Objects

How about this one?

Stanford Graphics Laboratory
3D Objects

This one?

H&B Figure 9.9
3D Objects

This one?
3D Object Representations

- **Raw data**
 - Point cloud
 - Range image
 - Polygon soup

- **Surfaces**
 - Mesh
 - Subdivision
 - Parametric
 - Implicit

- **Solids**
 - Voxels
 - BSP tree
 - CSG
 - Sweep

- **High-level structures**
 - Scene graph
 - Skeleton
 - Application specific
Point Clouds

• Unstructured set of 3D point samples
 ◦ Acquired from random sampling, particle system implementations, etc.
Range Images

- An image storing depth instead of / as well as color
 - Acquired from 3D scanners

Range Image Tessellation Range Surface
Polygon Soups

• Unstructured set of polygons
 ◦ Created with interactive modeling systems, combining range images, etc.
3D Object Representations

- Raw data
 - Point cloud
 - Range image
 - Polygon soup

- Surfaces
 - Mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep

- High-level structures
 - Scene graph
 - Skeleton
 - Application specific
(Manifold) Meshes

- Connected set of polygons (usually triangles)
Subdivision Surfaces

• Coarse mesh & subdivision rule
 ◦ Define smooth surface as limit of sequence of refinements
Parametric Surfaces

- Tensor product spline patches
 - Careful use of constraints to maintain continuity
Implicit Surfaces

- Points satisfying: $F(x, y, z) = 0$
3D Object Representations

- **Raw data**
 - Point cloud
 - Range image
 - Polygon soup

- **Surfaces**
 - Mesh
 - Subdivision
 - Parametric
 - Implicit

- **Solids**
 - Voxels
 - BSP tree
 - CSG
 - Sweep

- **High-level structures**
 - Scene graph
 - Skeleton
 - Application specific
Voxels

- Uniform grid of volumetric samples
 - Acquired from CT, MRI, etc.

FvDFH Figure 12.20

Stanford Graphics Laboratory
BSP Trees

• Binary space partition with solid cells labeled
 ◦ Constructed from polygonal representations

Object

Binary Spatial Partition

Binary Tree

Naylor
Constructive Solid Geometry (CSG)

- Hierarchy of boolean set operations (union, difference, intersect) applied to simple shapes

FvDFH Figure 12.27

H&B Figure 9.9
Sweep Surfaces

- Solid swept by curve along trajectory

Stephen Chenney
U Wisconsin
3D Object Representations

• Raw data
 ◦ Point cloud
 ◦ Range image
 ◦ Polygon soup

• Surfaces
 ◦ Mesh
 ◦ Subdivision
 ◦ Parametric
 ◦ Implicit

• Solids
 ◦ Voxels
 ◦ BSP tree
 ◦ CSG
 ◦ Sweep

• High-level structures
 ◦ Scene graph
 ◦ Skeleton
 ◦ Application specific
Scene Graphs

• Union of objects at leaf nodes
Skelettons

• Graph of curves with radii
Application Specific

Apo A-1
(Theoretical Biophysics Group, University of Illinois at Urbana-Champaign)

Architectural Floorplan
Surfaces

- What makes a good surface representation?
 - Concise
 - Local support
 - Affine invariant
 - Arbitrary topology
 - Guaranteed smoothness
 - Natural parameterization
 - Efficient display
 - Efficient intersections

H&B Figure 10.46
Surfaces

• What makes a good surface representation?
 ○ Concise
 ○ Local support
 ○ Affine invariant
 ○ Arbitrary topology
 ○ Guaranteed smoothness
 ○ Natural parameterization
 ○ Efficient display
 ○ Efficient intersections

Not Local Support
Surfaces

• What makes a good surface representation?
 ○ Concise
 ○ Local support
 ○ **Affine invariant**
 ○ Arbitrary topology
 ○ Guaranteed smoothness
 ○ Natural parameterization
 ○ Efficient display
 ○ Efficient intersections

Applying an affine transformation to the surface does not fundamentally change its representation.
Surfaces

What makes a good surface representation?

- Concise
- Local support
- Affine invariant
- Arbitrary topology
- Guaranteed smoothness
- Natural parameterization
- Efficient display
- Efficient intersections

Topological Genus Equivalences
Surfaces

- What makes a good surface representation?
 - Concise
 - Local support
 - Affine invariant
 - Arbitrary topology
 - Guaranteed smoothness
 - Natural parameterization
 - Efficient display
 - Efficient intersections
Surfaces

• What makes a good surface representation?
 ◦ Concise
 ◦ Local support
 ◦ Affine invariant
 ◦ Arbitrary topology
 ◦ Guaranteed smoothness
 ◦ Natural parameterization
 ◦ Efficient display
 ◦ Efficient intersections

A Parameterization (not necessarily natural)
Surfaces

• What makes a good surface representation?
 ◦ Concise
 ◦ Local support
 ◦ Affine invariant
 ◦ Arbitrary topology
 ◦ Guaranteed smoothness
 ◦ Natural parameterization
 ◦ Efficient display
 ◦ Efficient intersections
Subdivision Surfaces

- **Properties:**
 - Concise
 - Local support
 - Affine invariant
 - Arbitrary topology
 - Guaranteed continuity
 - Natural parameterization
 - Efficient display
 - Efficient intersections
Subdivision

• How do you make a smooth curve?

We want to “smooth out” severe angles
Subdivision

• How do you make a smooth curve?

We want to “smooth out” severe angles
Subdivision Surfaces

• Coarse mesh & subdivision rule
 ◦ Define smooth surface as limit of sequence of refinements

Note that the subdivision surface does not have to interpolate the original vertices.
Key Questions

- How to subdivide the mesh?
 - Aim for properties like smoothness

- How to store the mesh?
 - Aim for efficiency of implementing subdivision rules
General Subdivision Scheme

• How to subdivide mesh?

 Two parts:

 » Refinement:
 - Add new vertices and connect (topological)

 » Smoothing:
 - Move vertex positions (geometric)
Loop Subdivision Scheme

- How to subdivide mesh?

 Refinement:

 » Subdivide each triangle into 4 triangles by splitting each edge and connecting new vertices

Zorin & Schroeder
SIGGRAPH 99
Course Notes
Loop Subdivision Scheme

• How to subdivide mesh:
 Refinement
 Smoothing:
 » Existing Vertices: Choose new location as weighted average of original vertex and its neighbors

Existing vertex being moved from one level to the next

Zorin & Schroeder
SIGGRAPH 99
Course Notes
Loop Subdivision Scheme

- General rule for moving existing *interior vertices*:

$$\text{New_position} = (1 - k\beta)\text{original_position} + \text{sum}(\beta \times \text{each_original_vertex})$$

What about vertices that have more or less than 6 neighboring faces?
Loop Subdivision Scheme

- General rule for moving existing *interior vertices*:

\[
\text{New_position} = (1 - k\beta) \text{original_position} + \text{sum}(\beta \times \text{each_original_vertex})
\]

\[0 \leq \beta \leq 1/k:\]

- As \(\beta\) increases, the contribution from adjacent vertices plays a more important role.
- If \(\beta = 0\), the subdivision is interpolatory.
Where do existing vertices move?

• How to choose β?
 ◦ Analyze properties of limit surface
 ◦ Interested in continuity of surface and smoothness
 ◦ Involves calculating eigenvalues of matrices

 » Original Loop
 \[
 \beta = \frac{1}{2} \left(\frac{5}{8} - \left(\frac{3}{8} + \frac{1}{4} \cos \frac{2\pi}{k} \right)^2 \right)
 \]

 » Warren
 \[
 \beta = \begin{cases}
 \frac{3}{8k} & k > 3 \\
 \frac{3}{16} & k = 3
 \end{cases}
 \]
Loop Subdivision Scheme

• How to subdivide mesh:
 Refinement
 Smoothing:

 » **Inserted Vertices**: Choose location as weighted average of original vertices in local neighborhood

New vertex being inserted
Boundary Cases?

- What about *boundary vertices* and *boundary edges*?
 - Existing vertex adjacent to a missing triangle
 - New vertex bordered by only one triangle
Boundary Cases?

- Rules for *boundary vertices* and *boundary edges*:
Loop Subdivision Scheme

Limit surface has provable smoothness properties!
Loop Subdivision Scheme

Geri’s Game, *Pixar*