Image Processing, Warping, and Sampling

Michael Kazhdan

(601.457/657)

HB Ch. 4.8
FvDFH Ch. 14.10
Outline

• Image Processing
• Image Warping
• Image Sampling
Image Processing

• What about the case when the modification that we would like to make to a pixel depends on the pixels around it?
 ◦ Blurring
 ◦ Edge Detection
 ◦ Etc.
Multi-Pixel Operations

Stationary/Local Filtering

• In the simplest case, we define a mask of weights telling us how values at adjacent pixels should be combined to generate the new value.
Blurring

- To blur across pixels, define a mask:
 - Whose values are non-negative
 - Whose value is largest at the center pixel
 - Whose entries sum to one.

Original Blur

\[
\begin{bmatrix}
\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\
\frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\
\frac{1}{16} & \frac{2}{16} & \frac{1}{16}
\end{bmatrix}
\]
Blurring

Pixel(x,y): red = 36
 green = 36
 blue = 0

Filter =
\[
\begin{bmatrix}
\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\
\frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\
\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\
\end{bmatrix}
\]
Blurring

Pixel\((x,y)\): red = 36
green = 36
blue = 0

Pixel\((x,y).\) red and its red neighbors

<table>
<thead>
<tr>
<th>X - 1</th>
<th>X</th>
<th>X + 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>109</td>
<td>146</td>
</tr>
<tr>
<td>32</td>
<td>36</td>
<td>109</td>
</tr>
<tr>
<td>32</td>
<td>36</td>
<td>73</td>
</tr>
</tbody>
</table>

Filter = \[
\begin{bmatrix}
\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\
\frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\
\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\
\end{bmatrix}
\]
Filter =

\[
\begin{bmatrix}
\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\
\frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\
\frac{1}{16} & \frac{2}{16} & \frac{1}{16}
\end{bmatrix}
\]

New value for Pixel(x,y).red =

\[
\begin{align*}
(36 \times \frac{1}{16}) & \quad + \quad (109 \times \frac{2}{16}) & \quad + \quad (146 \times \frac{1}{16}) \\
(32 \times \frac{2}{16}) & \quad + \quad (36 \times \frac{4}{16}) & \quad + \quad (109 \times \frac{2}{16}) \\
(32 \times \frac{1}{16}) & \quad + \quad (36 \times \frac{2}{16}) & \quad + \quad (73 \times \frac{1}{16})
\end{align*}
\]
Blurring

New value for Pixel(x,y).red = 62.69

\[
\begin{array}{ccc}
X - 1 & X & X + 1 \\
Y - 1 & 36 & 109 & 146 \\
Y & 32 & 36 & 109 \\
Y + 1 & 32 & 36 & 73 \\
\end{array}
\]

Pixel(x,y).red and its red neighbors

Filter =
\[
\begin{bmatrix}
\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\
\frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\
\frac{1}{16} & \frac{2}{16} & \frac{1}{16}
\end{bmatrix}
\]
Blurring

Original

Blur

New value for Pixel(x,y).red = 63

\[
\begin{bmatrix}
\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\
\frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\
\frac{1}{16} & \frac{2}{16} & \frac{1}{16}
\end{bmatrix}
\]
Blurring

- Repeat for each pixel and each color channel
- Keep source and destination separate to avoid “drift”.
- For boundary pixels, not all neighbors are used, and you need to normalize the mask so that the sum of the values is correct.
Blurring

• In general, the mask can have arbitrary size:
 ◦ We can express a smaller mask as a bigger one by padding with zeros.

\[
\begin{bmatrix}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1 \\
\end{bmatrix} / 16
\]

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 \\
0 & 2 & 4 & 2 & 0 \\
0 & 1 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix} / 16
\]
Blurring

- In general, the mask can have arbitrary size:
 - We can have more non-zero entries to give rise to a wider blur.

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 \\
0 & 2 & 4 & 2 & 0 \\
0 & 1 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
/16
\]

\[
\begin{bmatrix}
0 & 1 & 2 & 1 & 0 \\
1 & 2 & 4 & 2 & 1 \\
2 & 4 & 8 & 4 & 2 \\
1 & 2 & 4 & 2 & 1 \\
0 & 1 & 2 & 1 & 0 \\
\end{bmatrix}
/48
\]
Blurring

- A general way for defining the entries of an \(n \times n \) mask is to use the values of a Gaussian:

\[
\text{GaussianMask}[i][j] = e^{-\frac{d_i^2 + d_j^2}{2\sigma^2}}
\]

- \(\sigma \) equals the mask radius (\(n/2 \) for an \(n \times n \) mask)
- \(d_i \) is \(i \)'s horizontal distance from the center pixel
- \(d_j \) is \(j \)'s vertical distance from the center pixel
- Don’t forget to normalize!
Edge Detection

- An edge is a point in the image where the image is “far” from constant.
Edge Detection

• To find the edges in an image, define a mask:
 ◦ Whose value is largest at the center pixel
 ◦ Whose entries sum to zero.

• Edge pixels are those whose value is larger (on average) than those of its neighbors.

Filter = $\frac{1}{8} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$
Edge Detection

Pixel(x,y): red = 36
 green = 36
 blue = 0

Filter = $\frac{1}{8} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$

Original
Edge Detection

Original

Pixel(x,y): red = 36
green = 36
blue = 0

<table>
<thead>
<tr>
<th>Y - 1</th>
<th>X - 1</th>
<th>X</th>
<th>X + 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>109</td>
<td>146</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>36</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>36</td>
<td>73</td>
<td></td>
</tr>
</tbody>
</table>

Pixel(x,y).red and its red neighbors

Filter

\[
\begin{bmatrix}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1 \\
\end{bmatrix}
\]
Edge Detection

Original

<table>
<thead>
<tr>
<th></th>
<th>X - 1</th>
<th>X</th>
<th>X + 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y - 1</td>
<td>36</td>
<td>109</td>
<td>146</td>
</tr>
<tr>
<td>Y</td>
<td>32</td>
<td>36</td>
<td>109</td>
</tr>
<tr>
<td>Y + 1</td>
<td>32</td>
<td>36</td>
<td>73</td>
</tr>
</tbody>
</table>

Pixel(x,y).red and its red neighbors

New value for Pixel(x,y).red =

\[
\begin{align*}
(36 \times -1/8) + (109 \times -1/8) + (146 \times -1/8) \\
(32 \times -1/8) + (36 \times 1) + (109 \times -1/8) \\
(32 \times -1/8) + (36 \times -1/8) + (73 \times -1/8)
\end{align*}
\]

Filter = \(\frac{1}{8} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix} \)
Edge Detection

New value for Pixel(x,y).red = -285/8

<table>
<thead>
<tr>
<th></th>
<th>X - 1</th>
<th>X</th>
<th>X + 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y - 1</td>
<td>36</td>
<td>109</td>
<td>146</td>
</tr>
<tr>
<td>Y</td>
<td>32</td>
<td>36</td>
<td>109</td>
</tr>
<tr>
<td>Y + 1</td>
<td>32</td>
<td>36</td>
<td>73</td>
</tr>
</tbody>
</table>

Pixel(x,y).red and its red neighbors

Filter = \(\frac{1}{8} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix} \)
Edge Detection

Original

<table>
<thead>
<tr>
<th>Y - 1</th>
<th>Y</th>
<th>Y + 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>109</td>
<td>146</td>
</tr>
<tr>
<td>32</td>
<td>36</td>
<td>109</td>
</tr>
<tr>
<td>32</td>
<td>36</td>
<td>73</td>
</tr>
</tbody>
</table>

Pixel(x,y).red and its red neighbors

New value for Pixel(x,y).red = 0

Filter = \(\frac{1}{8} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix} \)
Edge Detection

New value for Pixel(x,y).red = 0

Original

Detected Edges

Filter = \(\frac{1}{8} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix} \)

Note: Edge values are not colors, so we have to rescale/remap for visualization.
Outline

• Image Processing
• Image Warping
• Image Sampling
Image Warping

- Move pixels of image
 - Mapping
 - Resampling
Overview

• Mapping
 ◦ Forward
 ◦ Inverse

• Resampling
 ◦ Point sampling
 ◦ Triangle filter
 ◦ Gaussian filter
Mapping

- Define transformation
 - Describe the destination \((x, y) = \Phi(u, v)\) for every location \((u, v)\) in the source
Example Mappings

- Scale by σ:
 - $\Phi(u, v) = (\sigma u, \sigma v)$

Scale $\sigma = 0.8$
Example Mappings

- Rotate by θ degrees:
 - $\Phi(u, v) = (u \cos \theta - v \sin \theta, u \sin \theta + v \cos \theta)$
Example Mappings

- Shear in x by σ_x:
 - $\Phi(u, v) = (u + \sigma_x \cdot v, v)$

- Shear in y by σ_y:
 - $\Phi(u, v) = (u, v + \sigma_y \cdot u)$
Other Mappings

- Any function of u and v:
 - $\Phi(u, v) = \ldots$

Fish-eye

“Swirl”

“Rain”
Image Warping Implementation I

- Forward mapping:

\[
\text{for(int } v=0 ; v<v_{\text{max}} ; v++) \hspace{2cm}
\text{for(int } u=0 ; u<u_{\text{max}} ; u++) \hspace{2cm}
\text{float } (x,y) = \Phi(u,v) ;
\text{dst}(x,y) = \text{src}(u,v) ;
\]
Forward Mapping

- Iterate over source image
Forward Mapping – BAD!

- Iterate over source image

Multiple source pixels can map to same destination pixel

Rotate + Translate
Forward Mapping – BAD!

- Iterate over source image

Multiple source pixels can map to same destination pixel

Some destination pixels may not be covered

Rotate + Translate
Image Warping Implementation II

- Inverse mapping:

```c
for( int y=0 ; yymax ; y++ )
    for( int x=0 ; x<xmax ; x++ )
        float (u,v) = \Phi^{-1}(x,y);
        dst(x,y) = src(u,v);
```

![Diagram showing source and destination images with point mapping](image.png)
Reverse Mapping – GOOD!

- Iterate over destination image
 - Must resample source
 - May oversample, but much simpler!

Rotate -30 + Translate
Resampling

- Evaluate source image at arbitrary \((u, v)\)

\((u, v)\) does not usually have integer coordinates
Overview

• Mapping
 ○ Forward
 ○ Inverse

• Resampling
 ○ Nearest Point Sampling
 ○ Bilinear Sampling
 ○ Gaussian Sampling
Nearest Point Sampling

- Take value at closest pixel:

  ```
  int iu = floor(u+0.5);
  int iv = floor(v+0.5);
  dst(x,y) = src(iu,iv);
  ```

Rotate + Translate
Bilinear Sampling

- Bilinearly interpolate four closest source pixels

\[
dst(x, y) = \text{Weighted average of source at } (u_1, v_1), (u_2, v_1), (u_1, v_2), \text{ and } (u_2, v_2)
\]
Linear Sampling

- Linearly interpolate two closest source pixels
 \[\text{dst}(x) = \text{linear interpolation of } u_1 \text{ and } u_2 \]

\[
\begin{align*}
u_1 &= \text{floor}(u) ; \\
u_2 &= u_1 + 1 ; \\
du &= u - u_1 ; \\
\text{dst}(x) &= \text{src}(u_1) \times (1 - du) + \text{src}(u_2) \times du ;
\end{align*}
\]
Bilinear Sampling

- Bilinearly interpolate four closest source pixels

 \[
 \begin{align*}
 a &= \text{linear interpolation of } \text{src}(u_1, v_1) \text{ and } \text{src}(u_2, v_1) \\
 b &= \text{linear interpolation of } \text{src}(u_1, v_2) \text{ and } \text{src}(u_2, v_2) \\
 \text{dst}(x, y) &= \text{linear interpolation of } a \text{ and } b
 \end{align*}
 \]

\[
\begin{align*}
 u_1 &= \text{floor}(u) \ , \ u_2 = u_1 + 1; \\
 v_1 &= \text{floor}(v) \ , \ v_2 = v_1 + 1; \\
 du &= u - u_1; \\
 a &= \text{src}(u_1, v_1)*(1-du) \\
 &+ \text{src}(u_2, v_1)*(du); \\
 b &= \text{src}(u_1, v_2)*(1-du) \\
 &+ \text{src}(u_2, v_2)*du; \\
 dv &= v - v_1; \\
 \text{dst}(x, y) &= a*(1-dv) + b*dv;
\end{align*}
\]
Bilinear Sampling

- Bilinearly interpolate four closest source pixels
 \[a = \text{linear interpolation of src}(u_1, v_1) \text{ and src}(u_2, v_1) \]
 \[b = \text{linear interpolation of src}(u_1, v_2) \text{ and src}(u_2, v_2) \]
 \[\text{dst}(x, y) = \text{linear interpolation of } a \text{ and } b \]

\[
\begin{align*}
 u_1 &= \text{floor}(u) , \quad u_2 = u_1 + 1; \\
 v_1 &= \text{floor}(v) , \quad v_2 = v_1 + 1; \\
 d_u &= u - u_1; \\
 a &= \text{src}(u_1,v_1) \times (1 - d_u) + \text{src}(u_2,v_1) \times d_u; \\
 d_v &= v - v_1; \\
 b &= \text{src}(u_1,v_2) \times (1 - d_u) + \text{src}(u_2,v_2) \times d_u; \\
 \text{dst}(x,y) &= a \times (1 - d_v) + b \times d_v;
\end{align*}
\]

Make sure to test that the pixels \((u_1, v_1), (u_2, v_2), (u_1, v_2), \text{ and } (u_2, v_1)\) are within the image.
Gaussian Sampling

- Compute weighted sum of pixel neighborhood:
 - The blending weights are the normalized values of a Gaussian function.
Filtering Methods Comparison

• Trade-offs
 ◦ Jagged edges versus blurring
 ◦ Computation speed

Nearest Bilinear Gaussian
Image Warping Implementation

- Inverse mapping:

```plaintext
for( int y=0 ; y<ymax ; y++ )
    for( int x=0 ; x<xmax ; x++ )
        float (u,v) = \Phi^{-1}(x,y);
        dst(x,y) = resample_src(u,v,w);
```

Source image \[\Phi\] Destination image

\((u,v)\) \(\Phi\) \((x,y)\)
Image Warping Implementation

- Inverse mapping:

\[
\begin{align*}
 &\text{for(int } y=0 ; y<\text{ymax } ; y++) \\
 &\text{for(int } x=0 ; x<\text{xmax } ; x++) \\
 &\quad \text{float } (u,v) = \Phi^{-1}(x,y); \\
 &\quad \text{dst}(x,y) = \text{resample}_\text{src}(u,v,w);
\end{align*}
\]
Example: Scale

Scale(src, dst, \(\sigma \)):

float w \equiv ?;
for(int y=0 ; y<ymax ; y++)
 for(int x=0 ; x<xmax ; x++)
 float (u,v) = (x,y) / \(\sigma \);
 dst(x,y) = resample_src(u,v,w);

\[w = \frac{1}{\sigma} \]
Example: Rotate

Rotate(src, dst, \(\theta \)):

```plaintext
float w ≡ ?;
for( int y=0 ; y<y_{\text{max}} ; y++ )
  for( int x=0 ; x<x_{\text{max}} ; x++ )
    float (u,v) = ( x \cdot \cos(-\theta) - y \cdot \sin(-\theta) , \\
                   x \cdot \sin(-\theta) + y \cdot \cos(-\theta) );
    dst(x,y) = \text{resample\_src}(u,v,w);
```

x = u \cdot \cos \theta - v \cdot \sin \theta
y = u \cdot \sin \theta + v \cdot \cos \theta

\(\theta = 30 \)
Example: Fun

Swirl(src, dst, θ):

float w ≈ ?;
for(int y = 0; y < ymax; y++)
 for(int x = 0; x < xmax; x++)
 float (u, v) =
 rot((xc, yc), (x, y),
 dist((x, y) - (xc, yc)) * theta);
 dst(x, y) = resample_src(u, v, w);
Outline

• Image Processing
• Image Warping
• Image Sampling
Sampling Questions

• How should we sample an image:
 ◦ Nearest Point Sampling?
 ◦ Bilinear Sampling?
 ◦ Gaussian Sampling?
 ◦ Something Else?
What is an image?

An image is a discrete collection of pixels, each representing a sample of a continuous function.
Sampling

Let’s look at a 1D example:

Continuous Function Discrete Samples
Sampling

At in-between positions, values are undefined.

How do we determine the value of a sample?

We need to reconstruct a continuous function, turning a collection of discrete samples into a 1D function that we can sample at arbitrary locations.
Nearest Point Sampling

The value at a point is the value of the closest discrete sample.
Nearest Point Sampling

The value at a point is the value of the closest discrete sample.

The reconstruction:
✓ Interpolates the samples
✗ Is not continuous

Reconstructed Function Discrete Samples
Bilinear Sampling

The value at a point is the (bi)linear interpolation of the two surrounding samples.
Bilinear Sampling

The value at a point is the (bi)linear interpolation of the two surrounding samples.

The reconstruction:
- Interpolates the samples
- Is not smooth

Reconstructed Function

Discrete Samples
Gaussian Sampling

The value at a point is the Gaussian average of the surrounding samples.
Gaussian Sampling

The value at a point is the Gaussian average of the surrounding samples.

The reconstruction:
- Does not interpolate
- Is smooth
Image Sampling

Typically this is done in two steps:
1. Reconstruct a continuous function from input samples.
2. Sample a continuous function at a fixed resolution.

Challenge:

Reconstruction is an under-constrained problem.

⇒ To make headway, we need to define what makes a reconstruction good.
Image Sampling

Typically this is done in two steps:

1. Reconstruct a continuous function from input samples.
2. Sample a continuous function at a fixed resolution.

Challenge:

Key Idea:
Of all possible reconstructions, we want the one that is smoothest (has lowest frequencies).

Signal processing helps us formulate this precisely.
Fourier Analysis

- Fourier analysis provides a way for expressing (or approximating) any signal as a sum of scaled and shifted cosine functions.

The Building Blocks for the Fourier Decomposition
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

Initial Function

| \(f_0(\theta) = a_0 \cdot \cos(0 \cdot (\theta + \phi_0)) \) |
|------------------|----------------|
| \(0^{th} \) Order Component |

\(\theta \)
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

\[f_1(\theta) = a_1 \cdot \cos(1 \cdot (\theta + \phi_1)) \]

Initial Function	1st Order Approximation
\(f(\theta) \) |
0th Order Approximation | 1st Order Component
Fourier Analysis

• As higher frequency components are added to the approximation, finer details are captured.

\[f_2(\theta) = a_2 \cdot \cos(2 \cdot (\theta + \phi_2)) \]

2nd Order Component
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

Initial Function

\[f(\theta) = a_3 \cdot \cos(3 \cdot (\theta + \phi_3)) \]

3\(^{rd}\) Order Component

2\(^{nd}\) Order Approximation

3\(^{rd}\) Order Approximation
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

\[f_4(\theta) = a_4 \cdot \cos(4 \cdot (\theta + \phi_4)) \]

4th Order Component
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

Initial Function

$\begin{align*}
5\text{th Order Approximation} & = a_5 \cdot \cos(5 \cdot (\theta + \phi_5)) \\
4\text{th Order Approximation} & = a_4 \cdot \cos(4 \cdot \theta) \\
\end{align*}$
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

Initial Function

$\mathbf{f(\theta)}$

5th Order Approximation

\[f_6(\theta) = a_6 \cdot \cos(6 \cdot (\theta + \phi_6)) \]

6th Order Component

6th Order Approximation
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

\[f_7(\theta) = a_7 \cdot \cos(7 \cdot (\theta + \phi_8)) \]

Initial Function

6th Order Approximation

\[f(\theta) \]

7th Order Approximation

7th Order Component
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

\[f(\theta) = a_8 \cdot \cos(8 \cdot (\theta + \phi_8)) \]

Initial Function | 8th Order Approximation

\begin{align*}
\text{7th Order Approximation} & \quad \text{8th Order Component}
\end{align*}
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

Initial Function

\[
f(\theta)
\]

9th Order Approximation

\[
f_9(\theta) = a_9 \cdot \cos(9 \cdot (\theta + \phi_9))
\]

8th Order Approximation

\[
\]

9th Order Component
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

Initial Function

\[f_9(\theta) = a_9 \cdot \cos(9 \cdot (\theta + \phi_9)) \]

9th Order Approximation

\[f_{10}(\theta) = a_{10} \cdot \cos(10 \cdot (\theta + \phi_{10})) \]

10th Order Component
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

\[f_{11}(\theta) = a_{11} \cdot \cos(11 \cdot (\theta + \phi_{11})) \]

11th Order Component
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

\[f_{12}(\theta) = a_{12} \cdot \cos(12 \cdot (\theta + \phi_{12})) \]
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

\[f_{13}(\theta) = a_{13} \cdot \cos(13 \cdot (\theta + \phi_{13})) \]
Fourier Analysis

• As higher frequency components are added to the approximation, finer details are captured.

\[f_{14}(\theta) = a_{14} \cdot \cos(14 \cdot (\theta + \phi_{14})) \]

14th Order Component
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

\[f_{15}(\theta) = a_{15} \cdot \cos(15 \cdot (\theta + \phi_{15})) \]

15th Order Component
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

\[f_{15}(\theta) = a_{15} \cdot \cos(15 \cdot (\theta + \phi_{15})) \]

\[f_{16}(\theta) = a_{16} \cdot \cos(16 \cdot (\theta + \phi_{16})) \]

16th Order Component
Fourier Analysis

- Combining all of the frequency components together, we get the initial function:

\[
f(\theta) = \sum_{k=0}^{\infty} f_k(\theta) = \sum_{k=0}^{\infty} a_k \cdot \cos(k(\theta + \phi_k))
\]

- \(a_k\): amplitude of the \(k\)th frequency component
- \(\phi_k\): shift of the \(k\)th frequency component

Initial Function

\[
\begin{align*}
 f(\theta) &= f_0(\theta) + f_1(\theta) + f_2(\theta) + f_3(\theta) + f_4(\theta) + f_5(\theta) + f_6(\theta) + f_7(\theta) + f_8(\theta) + \ldots \\
 &= f_0(\theta) + f_1(\theta) + f_2(\theta) + f_3(\theta) + f_4(\theta) + f_5(\theta) + f_6(\theta) + f_7(\theta) + f_8(\theta) + \ldots
\end{align*}
\]
Question

• As higher frequency components are added to the approximation, finer details are captured.

• If we have n samples, what is the highest frequency that can be represented?
Question

- As higher frequency components are added to the approximation, finer details are captured.
- If we have n samples, what is the highest frequency that can be represented?

Each frequency component has two degrees of freedom:
- Amplitude
- Shift

With n samples we can represent the first $n/2$ frequency components.
Sampling Theorem

Shannon’s Theorem:

A signal can be reconstructed from its samples, if the original signal has no frequencies above $1/2$ the sampling rate -- a.k.a. the *Nyquist Frequency*.

Definition:

- A signal is *band-limited* if its highest non-zero frequency is bounded.
- The frequency is called the *bandwidth*.
- The minimum sampling rate for band-limited function is called the *Nyquist rate* (twice the bandwidth).
Image Sampling

1. To reconstruct the continuous function from m samples, we can find the unique function of frequency $m/2$ that interpolates the values.

2. Why don’t we just evaluate this function at the n sample positions?

 If $n < m$ we sample below the Nyquist rate!
Aliasing

• When a high-frequency signal is sampled with insufficiently many samples, it can be perceived as a lower-frequency signal. This masking of higher frequencies as lower ones is referred to as **aliasing**.
Aliasing

- When a high-frequency signal is sampled with insufficiently many samples, it can be perceived as a lower-frequency signal. This masking of higher frequencies as lower ones is referred to as aliasing.
Aliasing

• When a high-frequency signal is sampled with insufficiently many samples, it can be perceived as a lower-frequency signal. This masking of higher frequencies as lower ones is referred to as **aliasing**.
Aliasing

- When a high-frequency signal is sampled with insufficiently many samples, it can be perceived as a lower-frequency signal. This masking of higher frequencies as lower ones is referred to as **aliasing**.
Temporal Aliasing

- Artifacts due to limited temporal resolution

10 fps
Temporal Aliasing

- Artifacts due to limited temporal resolution

10 fps
25 fps
Temporal Aliasing

- Artifacts due to limited temporal resolution
Temporal Aliasing

- Artifacts due to limited temporal resolution
Temporal Aliasing

- Artifacts due to limited temporal resolution
Temporal Aliasing

- Artifacts due to limited temporal resolution
Sampling

- There are two problems:
 - You don’t have enough samples to correctly reconstruct your high-frequency information
 - You corrupt the low-frequency information because the high-frequencies mask themselves as lower ones.