Parametric Curves

Michael Kazhdan

(600.457)

HB 10.6 -- 10.9, 10.13
FvDFH 11.2
Overview

• What is a Spline?

• Specific Examples:
 ◦ Hermite Splines
 ◦ Cardinal Splines
 ◦ Uniform Cubic B-Splines

• Comparing Cardinal and Uniform Cubic B-Splines
A spline is a *piecewise polynomial function* whose derivatives satisfy some *continuity constraints* across curve boundaries.

\[P_i(x) = \sum_{j=0}^{n} a_{ij} \cdot x^j \]
What is a Spline in CG?

A spline is a *piecewise polynomial function* whose derivatives satisfy some *continuity constraints* across curve boundaries.

\[
P_i(x) = \sum_{j=0}^{n} a_{ij} \cdot x^j
\]

\[
P_1(1) = P_2(0) \quad P_1'(1) = P_2'(0)
\]

\[
P_2(1) = P_3(0) \quad P_2'(1) = P_3'(0)
\]

\[
\ldots
\]

\[
\ldots
\]
Overview

• What is a Spline?

• Specific Examples:
 ◦ Hermite Splines
 ◦ Cardinal Splines
 ◦ Uniform Cubic B-Splines

• Comparing Cardinal and Uniform Cubic B-Splines
Specific Example: Hermite Splines

- Interpolating piecewise cubic polynomial, each specified by:
 - Start/end positions
 - Start/end tangents

- Iteratively construct the curve between adjacent end points that interpolate positions and tangents.
Specific Example: Hermite Splines

- Interpolating piecewise *cubic* polynomial, each specified by:
 - Start/end positions
 - Start/end tangents

- Iteratively construct the curve between adjacent end points that interpolate positions and tangents.
Specific Example: Hermite Splines

- Interpolating piecewise cubic polynomial, each specified by:
 - Start/end positions
 - Start/end tangents

- Iteratively construct the curve between adjacent end points that interpolate positions and tangents.
Specific Example: Hermite Splines

- Interpolating piecewise \textit{cubic} polynomial, each specified by:
 - Start/end positions
 - Start/end tangents

- Iteratively construct the curve between adjacent end points that interpolate positions and tangents.
Specific Example: Hermite Splines

- Interpolating piecewise cubic polynomial, each specified by:
 - Start/end positions
 - Start/end tangents

- Iteratively construct the curve between adjacent end points that interpolate positions and tangents.
Specific Example: Hermite Splines

- Interpolating piecewise cubic polynomial, each specified by:
 - Start/end positions
 - Start/end tangents

- Iteratively construct the curve between adjacent end points that interpolate positions and tangents.
Specific Example: Hermite Splines

- Interpolating piecewise *cubic* polynomial, each specified by:
 - Start/end positions
 - Start/end tangents

- Iteratively construct the curve between adjacent end points that interpolate positions and tangents.

Because the end-points of adjacent curves share the same position and derivatives, the Hermite spline is C^1 by construction.
Specific Example: Hermite Splines

Given the matrix representations:

\[P_k(u) = (u^3 \quad u^2 \quad u \quad 1) \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \quad P'_k(u) = (3 \cdot u^2 \quad 2 \cdot u \quad 1 \quad 0) \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \]

we can express the values at the end-points as:

\[p_k = P_k(0) = (0 \quad 0 \quad 0 \quad 1) \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \quad \tilde{t}_k = P'_k(0) = (0 \quad 0 \quad 1 \quad 0) \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \]

\[p_{k+1} = P_k(1) = (1 \quad 1 \quad 1 \quad 1) \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \quad \tilde{t}_{k+1} = P'_k(1) = (3 \quad 2 \quad 1 \quad 0) \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \]
Specific Example: Hermite Splines

We can combine the equations:

\[
p_k = P_k(0) = (0 \ 0 \ 0 \ 1) \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \quad \hat{t}_k = P'_k(0) = (0 \ 0 \ 1 \ 0) \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}
\]

\[
p_{k+1} = P_k(1) = (1 \ 1 \ 1 \ 1) \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \quad \hat{t}_{k+1} = P'_k(1) = (3 \ 2 \ 1 \ 0) \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}
\]

into a single matrix expression:

\[
\begin{pmatrix} p_k \\ p_{k+1} \\ \hat{t}_k \\ \hat{t}_{k+1} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}
\]
Specific Example: Hermite Splines

Inverting the matrix in the equation:

\[
\begin{pmatrix}
 p_k \\
 p_{k+1} \\
 \vec{t}_k \\
 \vec{t}_{k+1}
\end{pmatrix}
=
\begin{pmatrix}
 0 & 0 & 0 & 1 \\
 1 & 1 & 1 & 1 \\
 0 & 0 & 1 & 0 \\
 3 & 2 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
 a \\
 b \\
 c \\
 d
\end{pmatrix}
\]

we get:

\[
\begin{pmatrix}
 a \\
 b \\
 c \\
 d
\end{pmatrix} =
\begin{pmatrix}
 0 & 0 & 0 & 1 \\
 1 & 1 & 1 & 1 \\
 0 & 0 & 1 & 0 \\
 3 & 2 & 1 & 0
\end{pmatrix}^{-1}
\begin{pmatrix}
 p_k \\
 p_{k+1} \\
 \vec{t}_k \\
 \vec{t}_{k+1}
\end{pmatrix}
\]
Specific Example: Hermite Splines

Inverting the matrix in the equation:

\[
\begin{pmatrix}
 p_k \\
 p_{k+1} \\
 \vec{t}_k \\
 \vec{t}_{k+1}
\end{pmatrix} = \begin{pmatrix}
 0 & 0 & 0 & 1 \\
 1 & 1 & 1 & 1 \\
 0 & 0 & 1 & 0 \\
 3 & 2 & 1 & 0
\end{pmatrix} \begin{pmatrix}
 a \\
 b \\
 c \\
 d
\end{pmatrix}
\]

we get:

\[
\begin{pmatrix}
 a \\
 b \\
 c \\
 d
\end{pmatrix} = \begin{pmatrix}
 0 & 0 & 0 & 1 \\
 1 & 1 & 1 & 1 \\
 0 & 0 & 1 & 0 \\
 3 & 2 & 1 & 0
\end{pmatrix}^{-1} \begin{pmatrix}
 p_k \\
 p_{k+1} \\
 \vec{t}_k \\
 \vec{t}_{k+1}
\end{pmatrix} = \begin{pmatrix}
 2 & -2 & 1 & 1 \\
 -3 & 3 & -2 & -1 \\
 0 & 0 & 1 & 0 \\
 1 & 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
 p_k \\
 p_{k+1} \\
 \vec{t}_k \\
 \vec{t}_{k+1}
\end{pmatrix}
\]
Specific Example: Hermite Splines

Using the facts that:
\[
\begin{pmatrix}
 a \\
 b \\
 c \\
 d
\end{pmatrix}
= \begin{pmatrix}
 2 & -2 & 1 & 1 \\
 -3 & 3 & -2 & -1 \\
 0 & 0 & 1 & 0 \\
 1 & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
 p_k \\
 p_{k+1} \\
 \vec{t}_k \\
 \vec{t}_{k+1}
\end{pmatrix}
\]

and
\[P_k(u) = (u^3 \ u^2 \ u \ 1) \cdot \begin{pmatrix}
 a \\
 b \\
 c \\
 d
\end{pmatrix}\]

We get:
\[P_k(u) = (u^3 \ u^2 \ u \ 1) \begin{pmatrix}
 2 & -2 & 1 & 1 \\
 -3 & 3 & -2 & -1 \\
 0 & 0 & 1 & 0 \\
 1 & 0 & 0 & 0
\end{pmatrix}\begin{pmatrix}
 p_k \\
 p_{k+1} \\
 \vec{t}_k \\
 \vec{t}_{k+1}
\end{pmatrix}\]
Specific Example: Hermite Splines

\[P_k(u) = (u^3 \quad u^2 \quad u \quad 1) \begin{pmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} p_k \\ p_{k+1} \\ \hat{t}_k \\ \hat{t}_{k+1} \end{pmatrix} \]

Setting:

- \(H_0(u) = 2u^3 - 3u^2 + 1 \)
- \(H_1(u) = -2u^3 + 3u^2 \)
- \(H_2(u) = u^3 - 2u^2 + u \)
- \(H_3(u) = u^3 - u^2 \)

we can re-write the equation as:

\[P_k(u) = p_k \cdot H_0(u) + p_{k+1} \cdot H_1(u) + \hat{t}_k \cdot H_2(u) + \hat{t}_{k+1} \]
Specific Example: Hermite Splines

Setting:

- $H_0(u) = 2u^3 - 3u^2 + 1$
- $H_1(u) = -2u^3 + 3u^2$
- $H_2(u) = u^3 - 2u^2 + u$
- $H_3(u) = u^3 - u^2$

Blending Functions

$$P_k(u) = p_k \cdot H_0(u) + p_{k+1} \cdot H_1(u) + \tilde{t}_k \cdot H_2(u) + \tilde{t}_{k+1} \cdot H_3(u)$$
Specific Example: Hermite Splines

- Interpolating piecewise \textit{cubic} polynomial, each specified by:
 - Start/end positions
 - Start/end tangents

- Iteratively construct the curve between adjacent end points that interpolate positions and tangents.

Given the control points, how do we define the value of the tangents/derivatives?
Overview

• What is a Spline?

• Specific Examples:
 ◦ Hermite Splines
 ◦ Cardinal Splines
 ◦ Uniform Cubic B-Splines

• Comparing Cardinal and Uniform Cubic B-Splines
Specific Example: Cardinal Splines

- Interpolating piecewise cubic polynomial, each specified by four control points.
- Iteratively construct the curve between middle two points using adjacent points to define tangents.
Specific Example: Cardinal Splines

- Interpolating piecewise *cubic* polynomial, each specified by four control points.
- Iteratively construct the curve between middle two points using adjacent points to define tangents.
Specific Example: Cardinal Splines

- Interpolating piecewise cubic polynomial, each specified by four control points.
- Iteratively construct the curve between middle two points using adjacent points to define tangents.
Specific Example: Cardinal Splines

- Interpolating piecewise cubic polynomial, each specified by four control points.
- Iteratively construct the curve between middle two points using adjacent points to define tangents.
Specific Example: Cardinal Splines

- Interpolating piecewise \textit{cubic} polynomial, each specified by four control points.
- Iteratively construct the curve between middle two points using adjacent points to define tangents.
Specific Example: Cardinal Splines

- Interpolating piecewise *cubic* polynomial, each specified by four control points.
- Iteratively construct the curve between middle two points using adjacent points to define tangents.
Specific Example: Cardinal Splines

- Interpolating piecewise cubic polynomial, each specified by four control points.
- Iteratively construct the curve between middle two points using adjacent points to define tangents.
Specific Example: Cardinal Splines

- Interpolating piecewise cubic polynomial, each specified by four control points.
- Iteratively construct the curve between middle two points using adjacent points to define tangents.
Specific Example: Cardinal Splines

• Interpolating piecewise *cubic* polynomial, each specified by four control points.

• Iteratively construct the curve between middle two points using adjacent points to define tangents.
Specific Example: Cardinal Splines

- Interpolating piecewise cubic polynomial, each specified by four control points.
- Iteratively construct the curve between middle two points using adjacent points to define tangents.
Specific Example: Cardinal Splines

- Interpolating piecewise cubic polynomial, each specified by four control points.
- Iteratively construct the curve between middle two points using adjacent points to define tangents.
Specific Example: Cardinal Splines

- Interpolating piecewise cubic polynomial, each specified by four control points.
- Iteratively construct the curve between middle two points using adjacent points to define tangents.
Specific Example: Cardinal Splines

- Interpolating piecewise cubic polynomial, each specified by four control points.
- Iteratively construct the curve between middle two points using adjacent points to define tangents.

Because the end-points of adjacent curves share the same position and derivatives, the Cardinal spline has C^1 continuity.
Specific Example: Cardinal Splines

Using Hermite splines, we have:

\[
P_k(u) = (u^3 \ u^2 \ u \ 1) \begin{pmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} p_k \\ p_{k+1} \\ \tilde{t}_k \\ \tilde{t}_{k+1} \end{pmatrix}
\]

\[
M_{Hermite}
\]

\[
\tilde{t}_k = s(p_{k+1} - p_{k-1})
\]

\[
\tilde{t}_{k+1} = s(p_{k+2} - p_k)
\]
Specific Example: Cardinal Splines

Using Hermite splines, we have:

\[P_k(u) = (u^3 \ u^2 \ u \ 1) \begin{pmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} p_k \\ p_{k+1} \\ \hat{t}_k \\ \hat{t}_{k+1} \end{pmatrix} \]

\[= (u^3 \ u^2 \ u \ 1) \begin{pmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} p_k \\ p_{k+1} \\ s(p_{k+1} - p_{k-1}) \\ s(p_{k+2} - p_k) \end{pmatrix} \]

\[= (u^3 \ u^2 \ u \ 1) \begin{pmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s & 0 & s & 0 \\ 1 & -s & 0 & s \end{pmatrix} \begin{pmatrix} p_{k-1} \\ p_k \\ p_{k+1} \\ p_{k+2} \end{pmatrix} \]
Specific Example: Cardinal Splines

Combining the matrices:

\[P_k(u) = (u^3 \quad u^2 \quad u \quad 1) \begin{pmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s & 0 & s & 0 \\ 1 & -s & 0 & s \end{pmatrix} \begin{pmatrix} p_{k-1} \\ p_k \\ p_{k+1} \\ p_{k+2} \end{pmatrix} \]

\[P_k(u) = (u^3 \quad u^2 \quad u \quad 1) \begin{pmatrix} -s & 2 - s & s - 2 & s \\ 2s & s - 3 & 3 - 2s & -s \\ -s & 0 & s & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} p_{k-1} \\ p_k \\ p_{k+1} \\ p_{k+2} \end{pmatrix} \]
Specific Example: Cardinal Splines

Setting:

- $C_0(u) = -su^3 + 2su^2 - su$
- $C_1(u) = (2 - s)u^3 + (s - 3)u^2 + 1$
- $C_2(u) = (s - 2)u^3 + (3 - 2s)u^2 + su$
- $C_3(u) = su^3 - su^2$

For $s = 1$:

$$P_k(u) = C_0(u) \cdot p_{k-1} + C_1(u) \cdot p_k + C_2(u) \cdot p_{k+1} + C_3(u) \cdot p_{k+2}$$
Specific Example: Cardinal Splines

- Interpolating piecewise cubic polynomial, each specified by four control points.
- Iteratively construct the curve between middle two points using adjacent points to define tangents.

At the first and last end-points, you can:
- Not draw the final segments
- Double up end points
- Loop the spline around
Overview

• What is a Spline?

• Specific Examples:
 ◦ Hermite Splines
 ◦ Cardinal Splines
 ◦ Uniform Cubic B-Splines

• Comparing Cardinal and Uniform Cubic B-Splines
Approximating piecewise cubic polynomial, each specified by four control points.

- Iteratively construct the curve between middle two points using adjacent points to define tangents.
Specific Example: Uniform Cubic B-Splines

- Approximating piecewise *cubic* polynomial, each specified by four control points.
- Iteratively construct the curve between middle two points using adjacent points to define tangents.
Specific Example: Uniform Cubic B-Splines

• Approximating piecewise cubic polynomial, each specified by four control points.

• Iteratively construct the curve between middle two points using adjacent points to define tangents.
Specific Example: Uniform Cubic B-Splines

• Approximating piecewise cubic polynomial, each specified by four control points.

• Iteratively construct the curve between middle two points using adjacent points to define tangents.

![Diagram of cubic B-spline curve with control points labeled as $p_0, p_1, p_2, p_3, p_4, p_5, p_6, p_7$.]
Specific Example: Uniform Cubic B-Splines

- Approximating piecewise cubic polynomial, each specified by four control points.
- Iteratively construct the curve between middle two points using adjacent points to define tangents.
Specific Example: Uniform Cubic B-Splines

• Approximating piecewise cubic polynomial, each specified by four control points.

• Iteratively construct the curve between middle two points using adjacent points to define tangents.
Specific Example: Uniform Cubic B-Splines

- Approximating piecewise cubic polynomial, each specified by four control points.
- Iteratively construct the curve between middle two points using adjacent points to define tangents.
Specific Example: Uniform Cubic B-Splines

- Approximating piecewise cubic polynomial, each specified by four control points.
- Iteratively construct the curve between middle two points using adjacent points to define tangents.
Specific Example: Uniform Cubic B-Splines

- Approximating piecewise cubic polynomial, each specified by four control points.
- Iteratively construct the curve between middle two points using adjacent points to define tangents
Specific Example: Uniform Cubic B-Splines

• Approximating piecewise cubic polynomial, each specified by four control points.

• Iteratively construct the curve between middle two points using adjacent points to define tangents.
Specific Example: Uniform Cubic B-Splines

• Approximating piecewise cubic polynomial, each specified by four control points.

• Iteratively construct the curve between middle two points using adjacent points to define tangents.
Specific Example: Uniform Cubic B-Splines

- Approximating piecewise \textit{cubic} polynomial, each specified by four control points.
- Iteratively construct the curve between middle two points using adjacent points to define tangents.
Specific Example: Uniform Cubic B-Splines

- Approximating piecewise cubic polynomial, each specified by four control points.
- Iteratively construct the curve between middle two points using adjacent points to define tangents.
Specific Example: Uniform Cubic B-Splines

- Approximating piecewise cubic polynomial, each specified by four control points.
- Iteratively construct the curve between middle two points using adjacent points to define tangents.
Specific Example: Uniform Cubic B-Splines

- Approximating piecewise *cubic* polynomial, each specified by four control points.
- Iteratively construct the curve between middle two points using adjacent points to define tangents.
Specific Example: Uniform Cubic B-Splines

- Approximating piecewise \textit{cubic} polynomial, each specified by four control points.
- Iteratively construct the curve between middle two points using adjacent points to define tangents.
Specific Example: Uniform Cubic B-Splines

- Approximating piecewise cubic polynomial, each specified by four control points.
- Iteratively construct the curve between middle two points using adjacent points to define tangents.
Specific Example: Uniform Cubic B-Splines

- Approximating piecewise cubic polynomial, each specified by four control points.
- Iteratively construct the curve between middle two points using adjacent points to define tangents.

Specific Example: Uniform Cubic B-Splines

\[p_0 \rightarrow p_1 \rightarrow p_2 \rightarrow p_3 \rightarrow p_4 \rightarrow p_5 \rightarrow p_6 \rightarrow p_7 \]
Specific Example: Uniform Cubic B-Splines

• Approximating piecewise cubic polynomial, each specified by four control points.

• Iteratively construct the curve between middle two points using adjacent points to define tangents.
Specific Example: Uniform Cubic B-Splines

Using Hermite splines, we have:

\[P_k(u) = (u^3 \quad u^2 \quad u \quad 1) \begin{pmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} p'_k \\ p'_{k+1} \\ \tilde{t}_k \\ \tilde{t}_{k+1} \end{pmatrix} \]

Specific Example:

Uniform Cubic B-Splines

\[p'_k = \frac{(p_{k-1} + 4p_k + p_{k+1})}{6} \]

\[p'_{k+1} = \frac{(p_k + 4p_{k+1} + p_{k+2})}{6} \]

\[\tilde{t}_k = s(p_{k+1} - p_{k-1}) \]

\[\tilde{t}_{k+1} = s(p_{k+2} - p_k) \]
Using Hermite splines, we have:

\[P_k(u) = (u^3 \quad u^2 \quad u \quad 1) \begin{pmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} p'_k \\ p'_{k+1} \\ \tilde{t}_k \\ \tilde{t}_{k+1} \end{pmatrix} \]

Specific Example: Uniform Cubic B-Splines
Specific Example: Uniform Cubic B-Splines

Combining the matrices:

\[P_k(u) = (u^3 \ u^2 \ u \ 1) \begin{pmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 4 & 1 & 0 \\ 0 & 1 & 4 & 1 \\ -6s & 0 & 6s & 0 \\ 1 & -6s & 0 & 6s \end{pmatrix} \begin{pmatrix} p_{k-1} \\ p_k \\ p_{k+1} \\ p_{k+2} \end{pmatrix} \]

\[P_k(u) = (u^3 \ u^2 \ u \ 1) \frac{1}{6} \begin{pmatrix} 2 - 6s & 6 - 6s & -6 + 6s & -2 + 6s \\ -3 + 12s & -9 + 6s & 9 - 12s & 3 - 6s \\ -6s & 0 & 6s & 0 \\ 1 & 4 & 1 & 0 \end{pmatrix} \begin{pmatrix} p_{k-1} \\ p_k \\ p_{k+1} \\ p_{k+2} \end{pmatrix} \]
Specific Example: Uniform Cubic B-Splines

Setting:

- \(B_{0,3}(u) = \frac{1}{6} (1 - u)^3 \)
- \(B_{1,3}(u) = \frac{1}{6} (3u^3 - 6u^2 + 4) \)
- \(B_{2,3}(u) = \frac{1}{6} (-3u^3 + 3u^2 + 3u + 1) \)
- \(B_{3,3}(u) = \frac{1}{6} u^3 \)

Blending Functions

\[
P_k(u) = B_{0,3}(u) \cdot p_{k-1} + B_{1,3}(u) \cdot p_k + B_{2,3}(u) \cdot p_{k+1} + B_{3,3}(u) \cdot p_{k+2}
\]
Specific Example: Uniform Cubic B-Splines

- Approximating piecewise cubic polynomial, each specified by four control points.
- Iteratively construct the curve between middle two points using adjacent points to define tangents.

At the first and last end-points, you can:
- Not draw the final segments
- Double up end points
- Loop the spline around
Overview

• What is a Spline?

• Specific Examples:
 ◦ Hermite Splines
 ◦ Cardinal Splines
 ◦ Uniform Cubic B-Splines

• Comparing Cardinal and Uniform Cubic B-Splines
Blending Functions

Blending functions provide a way for expressing the functions $P_k(u)$ as a weighted sum of the four control points $p_{k-1}, p_k, p_{k+1},$ and p_{k+2}:

$$P_k(u) = BF_0(u) \cdot p_{k-1} + BF_1(u) \cdot p_k + BF_2(u) \cdot p_{k+1} + BF_3(u) \cdot p_{k+2}$$
Blending Functions

Properties:

- **Translation Commutativity:**
 \[BF_0(u) + BF_1(u) + BF_2(u) + BF_3(u) = 1 \text{ for all } 0 \leq u \leq 1. \]

If we translate all the control points by the same vector \(q \), the position of the new point at the value \(u \) will just be the position of the old value at \(u \), translated by \(q \):

\[
Q_k(u) = BF_0(u)(q + p_{k-1}) + BF_1(u)(q + p_k) + BF_2(u)(q + p_{k+1}) + BF_3(u)(q + p_{k+2})
= (BF_0(u) + BF_1(u) + BF_2(u) + BF_3(u))q + P_k(u)
= q + P_k(u)
\]

- **Interpolation:**
 - \(BF_0(0) = BF_2(0) = BF_3(0) = 0 \)
 - \(BF_0(1) = BF_1(1) = BF_3(1) = 0 \)
 - \(BF_2(0) = 1 \)
 - \(BF_2(1) = 1 \)

\[
P_k(u) = BF_0(u) \cdot p_{k-1} + BF_1(u) \cdot p_k + BF_2(u) \cdot p_{k+1} + BF_3(u) \cdot p_{k+2}
\]
Comparison: Cardinal vs. Cubic B

Cardinal Splines ($s = 1/2$)

- $BF_0(u) = -\frac{1}{2}u^3 + u^2 - \frac{1}{2}u$
- $BF_1(u) = \frac{3}{2}u^3 - \frac{5}{2}u^2 + 1$
- $BF_2(u) = -\frac{3}{2}u^3 + 2u^2 + \frac{1}{2}u$
- $BF_3(u) = \frac{1}{2}u^3 - \frac{1}{2}u^2$

$BF_0(u) + BF_1(u) + BF_2(u) + BF_3(u) = 1$

Cubic B-Splines

- $BF_0(u) = -\frac{1}{6}u^3 + \frac{1}{2}u^2 - \frac{1}{2}u + \frac{1}{6}$
- $BF_1(u) = \frac{1}{2}u^3 - u^2 + \frac{2}{3}$
- $BF_2(u) = -\frac{1}{2}u^3 + \frac{1}{2}u^2 + \frac{1}{2}u + \frac{1}{6}$
- $BF_3(u) = \frac{1}{6}u^3$

$BF_0(u) + BF_1(u) + BF_2(u) + BF_3(u) = 1$
Blending Functions

Properties:

• Translation Commutativity:
 \[BF_0(u) + BF_1(u) + BF_2(u) + BF_3(u) = 1 \] for all \(0 \leq u \leq 1 \).

• Continuity:
 \[BF_0(1) = BF_3(0) = 0 \]
 \[BF_1(1) = BF_0(0) \]
 \[BF_2(1) = BF_1(0) \]
 \[BF_3(1) = BF_2(0) \]

We need the curve \(P_{k+1}(u) \) begin where \(P_k(u) \) ended:

\[
0 = P_{k+1}(0) - P_k(1)
\]

Since this equation has to hold true regardless of the values of \(p_k \), the conditions on the left have to be true.

\[
P_k(u) = BF_0(u) \cdot p_{k-1} + BF_1(u) \cdot p_k + BF_2(u) \cdot p_{k+1} + BF_3(u) \cdot p_{k+2}
\]
Blending Functions

Properties:

• Translation Commutativity:
 \[BF_0(u) + BF_1(u) + BF_2(u) + BF_3(u) = 1 \text{ for all } 0 \leq u \leq 1. \]

• Continuity:
 \[BF_0(1) = BF_3(0) = 0 \]
 \[BF_1(1) = BF_0(0) \]
 \[BF_2(1) = BF_1(0) \]
 \[BF_3(1) = BF_2(0) \]

• Convex Hull Containment:
 \[BF_0(u), BF_1(u), BF_2(u), BF_3(u) \geq 1, \text{ for all } 0 \leq u \leq 1. \]

• Interpolation:
 \[BF_0(0) = BF_2(0) = BF_3(0) = 0 \]
 \[BF_0(1) = BF_1(1) = BF_3(1) = 0 \]
 \[BF_1(0) = 1 \]
 \[BF_2(1) = 1 \]

We need to have the curve \(P_{k+1}(u) = P_k(u) + \sum \) begin where the curve \(P_k(u) \) ended:

Since this equation has to hold true regardless of the values of \(p_k \), the conditions on the left have to be true.

More Generally, if we want the spline to have continuous \(n \)-th order derivatives, the blending functions need to satisfy:

\[BF_0^{(n)}(1) = BF_3^{(n)}(0) = 0 \]
\[BF_1^{(n)}(1) = BF_0^{(n)}(0) \]
\[BF_2^{(n)}(1) = BF_1^{(n)}(0) \]
\[BF_3^{(n)}(1) = BF_2^{(n)}(0) \]

\[P_k(u) = BF_0(u) \cdot p_{k-1} + BF_1(u) \cdot p_k + BF_2(u) \cdot p_{k+1} + BF_3(u) \cdot p_{k+2} \]
Comparison: Cardinal vs. Cubic B

Cardinal Splines \((s = 1/2)\)

- \(BF_0(u) = -\frac{1}{2}u^3 + u^2 - \frac{1}{2}u\)
- \(BF_1(u) = \frac{3}{2}u^3 - \frac{5}{2}u^2 + 1\)
- \(BF_2(u) = -\frac{3}{2}u^3 + 2u^2 + \frac{1}{2}u\)
- \(BF_3(u) = \frac{1}{2}u^3 - \frac{1}{2}u^2\)

- \(BF_0(0) = 0\)
- \(BF_1(0) = 1\)
- \(BF_2(0) = 0\)
- \(BF_3(0) = 0\)
- \(BF_0(1) = 0\)
- \(BF_1(1) = 0\)
- \(BF_2(1) = 1\)
- \(BF_3(1) = 0\)

Cubic B-Splines

- \(BF_0(u) = -\frac{1}{6}u^3 + \frac{1}{2}u^2 - \frac{1}{2}u + \frac{1}{6}\)
- \(BF_1(u) = \frac{1}{2}u^3 - u^2 + \frac{2}{3}\)
- \(BF_2(u) = -\frac{1}{2}u^3 + \frac{1}{2}u^2 + \frac{1}{2}u + \frac{1}{6}\)
- \(BF_3(u) = \frac{1}{6}u^3\)

- \(BF_0(0) = \frac{1}{6}\)
- \(BF_1(0) = \frac{2}{3}\)
- \(BF_2(0) = \frac{1}{6}\)
- \(BF_3(0) = 0\)
- \(BF_0(1) = 0\)
- \(BF_1(1) = \frac{1}{6}\)
- \(BF_2(1) = \frac{2}{3}\)
- \(BF_3(1) = \frac{1}{6}\)

\[P_k(u) = BF_0(u) \cdot p_{k-1} + BF_1(u) \cdot p_k + BF_2(u) \cdot p_{k+1} + BF_3(u) \cdot p_{k+2}\]
Comparison: Cardinal vs. Cubic B

Cardinal Splines ($s = 1/2$)

- $BF_0(u) = -\frac{1}{2}u^3 + u^2 - \frac{1}{2}u$
- $BF_1(u) = \frac{3}{2}u^3 - \frac{5}{2}u^2 + 1$
- $BF_2(u) = -\frac{3}{2}u^3 + 2u^2 + \frac{1}{2}u$
- $BF_3(u) = \frac{1}{2}u^3 - \frac{1}{2}u^2$

<table>
<thead>
<tr>
<th>Derivative Condition</th>
<th>Cardinal Splines</th>
<th>Cubic B-Splines</th>
</tr>
</thead>
<tbody>
<tr>
<td>$BF_0'(0) = -\frac{1}{2}$</td>
<td>$BF_0'(1) = 0$</td>
<td>$BF_0'(0) = -\frac{1}{6}u^3 + \frac{1}{2}u^2 - \frac{1}{2}u + \frac{1}{6}$</td>
</tr>
<tr>
<td>$BF_1'(0) = 0$</td>
<td>$BF_1'(1) = -\frac{1}{2}$</td>
<td>$BF_1'(0) = 0$</td>
</tr>
<tr>
<td>$BF_2'(0) = \frac{1}{2}$</td>
<td>$BF_2'(1) = 0$</td>
<td>$BF_2'(0) = \frac{1}{2}$</td>
</tr>
<tr>
<td>$BF_3'(0) = 0$</td>
<td>$BF_3'(1) = \frac{1}{2}$</td>
<td>$BF_3'(0) = 0$</td>
</tr>
</tbody>
</table>

$P_k(u) = BF_0(u) \cdot p_{k-1} + BF_1(u) \cdot p_k + BF_2(u) \cdot p_{k+1} + BF_3(u) \cdot p_{k+2}$
Comparison: Cardinal vs. Cubic B

<table>
<thead>
<tr>
<th>Cardinal Splines ($s = 1/2$)</th>
<th>Cubic B-Splines</th>
</tr>
</thead>
<tbody>
<tr>
<td>$BF_0(u) = -\frac{1}{2}u^3 + u^2 - \frac{1}{2}u$</td>
<td>$BF_0(u) = -\frac{1}{6}u^3 + \frac{1}{2}u^2 - \frac{1}{2}u + \frac{1}{6}$</td>
</tr>
<tr>
<td>$BF_1(u) = \frac{3}{2}u^3 - \frac{5}{2}u^2 + 1$</td>
<td>$BF_1(u) = \frac{1}{2}u^3 - u^2 + \frac{2}{3}$</td>
</tr>
<tr>
<td>$BF_2(u) = -\frac{3}{2}u^3 + 2u^2 + \frac{1}{2}u$</td>
<td>$BF_2(u) = -\frac{1}{2}u^3 + \frac{1}{2}u^2 + \frac{1}{2}u + \frac{1}{6}$</td>
</tr>
<tr>
<td>$BF_3(u) = \frac{1}{2}u^3 - \frac{1}{2}u^2$</td>
<td>$BF_3(u) = \frac{1}{6}u^3$</td>
</tr>
</tbody>
</table>

- $BF_0''(0) = 2$
- $BF_0''(1) = 5$
- $BF_1''(0) = -5$
- $BF_1''(1) = 4$
- $BF_2''(0) = 4$
- $BF_2''(1) = -5$
- $BF_3''(0) = -1$
- $BF_3''(1) = 2$

- $BF_0''(0) = 1$
- $BF_0''(1) = 0$
- $BF_1''(0) = -2$
- $BF_1''(1) = 1$
- $BF_2''(0) = 1$
- $BF_2''(1) = -2$
- $BF_3''(0) = 0$
- $BF_3''(1) = 1$

\[P_k(u) = BF_0(u) \cdot p_{k-1} + BF_1(u) \cdot p_k + BF_2(u) \cdot p_{k+1} + BF_3(u) \cdot p_{k+2} \]
Blending Functions

Properties:

• Translation Commutativity:
 \(BF_0(u) + BF_1(u) + BF_2(u) + BF_3(u) = 1 \) for all \(0 \leq u \leq 1 \).

• Continuity:
 \(BF_0(1) = BF_3(0) = 0 \)
 \(BF_1(1) = BF_0(0) \)
 \(BF_2(1) = BF_1(0) \)
 \(BF_3(1) = BF_2(0) \)

• Convex Hull Containment:
 \(BF_0(u), BF_1(u), BF_2(u), BF_3(u) \geq 0 \), for all \(0 \leq u \leq 1 \).
 A point is inside the convex hull of a collection of points if and only if it can be expressed as the weighted average of the points, where all the weights are non-negative.

\[
P_k(u) = BF_0(u) \cdot p_{k-1} + BF_1(u) \cdot p_k + BF_2(u) \cdot p_{k+1} + BF_3(u) \cdot p_{k+2}
\]
Comparison: Cardinal vs. Cubic B

Cardinal Splines ($s = 1/2$)

Cubic B-Splines

\[P_k(u) = BF_0(u) \cdot p_{k-1} + BF_1(u) \cdot p_k + BF_2(u) \cdot p_{k+1} + BF_3(u) \cdot p_{k+2} \]
Comparison: Cardinal vs. Cubic B

Cardinal Splines \((s = 1/2)\)

\[
P_k(u) = BF_0(u) \cdot p_{k-1} + BF_1(u) \cdot p_k + BF_2(u) \cdot p_{k+1} + BF_3(u) \cdot p_{k+2}
\]
Blending Functions

Properties:

• Translation Commutativity:
 \[BF_0(u) + BF_1(u) + BF_2(u) + BF_3(u) = 1 \text{ for all } 0 \leq u \leq 1. \]

• Continuity:
 \[BF_0(1) = BF_3(0) = 0 \]
 \[BF_1(1) = BF_0(0) \]
 \[BF_2(1) = BF_1(0) \]
 \[BF_3(1) = BF_2(0) \]

• Convex Hull Containment:
 \[BF_0(u), BF_1(u), BF_2(u), BF_3(u) \geq 0, \text{ for all } 0 \leq u \leq 1. \]

• Interpolation:
 \[BF_0(0) = BF_2(0) = BF_3(0) = 0 \]
 \[BF_0(1) = BF_1(1) = BF_3(1) = 0 \]
 \[BF_1(0) = 1 \]
 \[BF_2(1) = 1 \]

Because we want the spline segments to satisfy:

\[P_k(0) = p_k \]
\[P_k(1) = p_{k+1} \]

\[P_k(u) = BF_0(u) \cdot p_{k-1} + BF_1(u) \cdot p_k + BF_2(u) \cdot p_{k+1} + BF_3(u) \cdot p_{k+2} \]
Comparison: Cardinal vs. Cubic B

Cardinal Splines \((s = 1/2)\)

Cardinal Splines

\[
BF_0(u) = -\frac{1}{2} u^3 + u^2 - \frac{1}{2} u \\
BF_1(u) = \frac{3}{2} u^3 - \frac{5}{2} u^2 + u \\
BF_2(u) = -\frac{3}{2} u^3 + 2u^2 + \frac{1}{2} u \\
BF_3(u) = \frac{1}{2} u^3 - \frac{1}{2} u^2
\]

Cubic B-Splines

\[
BF_0(u) = -\frac{1}{6} u^3 + \frac{1}{2} u^2 - \frac{1}{2} u + \frac{1}{6} \\
BF_1(u) = \frac{1}{2} u^3 - u^2 + \frac{2}{3} u + \frac{1}{6} \\
BF_2(u) = -\frac{1}{2} u^3 + \frac{1}{2} u^2 + \frac{1}{2} u + \frac{1}{6} \\
BF_3(u) = \frac{1}{6} u^3
\]

\[
P_k(u) = BF_0(u) \cdot p_{k-1} + BF_1(u) \cdot p_k + BF_2(u) \cdot p_{k+1} + BF_3(u) \cdot p_{k+2}
\]
Blending Functions

Properties:

- **Translation Commutativity:**
 \[BF_0(u) + BF_1(u) + BF_2(u) + BF_3(u) = 1 \] for all \(0 \leq u \leq 1 \).

- **Continuity:**
 \[BF_0(1) = BF_3(0) = 0 \]
 \[BF_1(1) = BF_0(0) \]
 \[BF_2(1) = BF_1(0) \]
 \[BF_3(1) = BF_2(0) \]

- **Convex Hull Containment:**
 \[BF_0(u), BF_1(u), BF_2(u), BF_3(u) \geq 0, \text{ for all } 0 \leq u \leq 1. \]

- **Interpolation:**
 \[BF_0(0) = BF_2(0) = BF_3(0) = 0 \]
 \[BF_0(1) = BF_1(1) = BF_3(1) = 0 \]
 \[BF_1(0) = 1 \]
 \[BF_2(1) = 1 \]

\[P_k(u) = BF_0(u) \cdot p_{k-1} + BF_1(u) \cdot p_k + BF_2(u) \cdot p_{k+1} + BF_3(u) \cdot p_{k+2} \]
Summary

• A spline is a *piecewise polynomial function* whose derivatives satisfy some *continuity constraints* across curve junctions.

• Looked at specification for 3 splines:
 ◦ Hermite \(\{ \text{Interpolating, cubic, } C^1 \} \)
 ◦ Cardinal \(\{ \text{Approximating, convex-hull containment, cubic, } C^2 \} \)
 ◦ Uniform Cubic B-Spline