Shading and Visibility

Michael Kazhdan

(600.457)

HB 13.2 -- 13.8, 14.5
FvDFH 15.4, 15.5, 15.6, 15.7.1, 16.2
3D Rendering Pipeline (for direct illumination)

- **3D Primitives**
 - 3D Modeling Coordinates

- **Modeling Transformation**
 - 3D World Coordinates

- **Camera Transformation**
 - 3D Camera Coordinates

- **Lighting**
 - 3D Camera Coordinates

- **Projection Transformation**
 - 2D Screen Coordinates

- **Clipping**
 - 2D Screen Coordinates

- **Viewport Transformation**
 - 2D Screen Coordinates

- **Scan Conversion**
 - 2D Image Coordinates

- **Image**
 - 2D Image Coordinates

Diagram:
- 3D Model
- 2D Screen
- 2D Window
3D Rendering Pipeline (for direct illumination)

- **3D Primitives**
- **Modeling Transformation**
 - 3D Modeling Coordinates
- **Camera Transformation**
 - 3D World Coordinates
 - 3D Camera Coordinates
- **Lighting**
- **Projection Transformation**
 - 3D Camera Coordinates
- **Clipping**
 - 2D Screen Coordinates
- **Viewport Transformation**
 - 2D Screen Coordinates
- **Scan Conversion**
 - 2D Image Coordinates
- **Image**
 - 2D Image Coordinates

3D Model

2D Window

2D Screen
3D Rendering Pipeline (for direct illumination)

3D Primitives

- Modeling Transformation
- 3D Modeling Coordinates

- Camera Transformation
- 3D World Coordinates

- Lighting
- 3D Camera Coordinates

- Projection Transformation
- 3D Camera Coordinates

- Clipping
- 2D Screen Coordinates

- Viewport Transformation
- 2D Screen Coordinates

- Scan Conversion
- 2D Image Coordinates

- Image
- 2D Image Coordinates

3D Model

2D Window

2D Screen
3D Rendering Pipeline (for direct illumination)

3D Primitives

Modeling Transformation

3D Modeling Coordinates

Camera Transformation

3D World Coordinates

Lighting

3D Camera Coordinates

Projection Transformation

3D Camera Coordinates

Clipping

2D Screen Coordinates

Viewport Transformation

2D Screen Coordinates

Scan Conversion

2D Image Coordinates

Image

3D Model

2D Window

2D Screen
Overview

• Scan conversion
 ◦ Figure out which pixels to fill

• Shading
 ◦ Determine a color for each filled pixel

• Depth test
 ◦ Determine when the color of a pixel comes from the front-most primitive
Polygon Shading

• Simplest shading approach is to perform independent lighting calculation for every pixel

\[I = I_E + K_A I_{AL} + \sum_i \left(K_D \langle \hat{N}, \hat{L}_i \rangle I_i + K_S \langle \hat{V}, \hat{R}_i \rangle^n I_i \right) \]
Polygon Shading

- Can take advantage of spatial coherence
 - Illumination calculations for pixels covered by same primitive are related to each other

\[I = I_E + K_A I_{AL} + \sum_i \left(K_D \langle \vec{N}, \vec{L}_i \rangle I_i + K_S \langle \vec{V}, \vec{R}_i \rangle^n I_i \right) \]
Polygon Shading Algorithms

• Flat Shading
• Gouraud Shading
• Phong Shading
Flat Shading

- Can take advantage of spatial coherence
 - Make the lighting equation constant over the surface of each primitive

<table>
<thead>
<tr>
<th></th>
<th>Surface Normal</th>
<th>Light Direction</th>
<th>View Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissive</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ambient</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Diffuse</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Specular</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

\[I = I_E + K_A I_{AL} + \sum_i \left(K_D \langle \vec{N}, \vec{L}_i \rangle I_i + K_S \langle \vec{V}, \vec{R}_i \rangle^n I_i \right) \]
Flat Shading

- Can take advantage of spatial coherence
 - Make the lighting equation constant over the surface of each primitive

<table>
<thead>
<tr>
<th>Surface</th>
<th>Emissive</th>
<th>Ambient</th>
<th>Diffuse</th>
<th>Specular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissive</td>
<td></td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ambient</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Diffuse</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Specular</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

\[I = I_E + K_A I_{AL} + \sum_i \left(K_D \langle \vec{N}, \vec{L}_i \rangle I_i + K_S \langle \vec{V}, \vec{R}_i \rangle^n I_i \right) \]
Flat Shading

- Can take advantage of spatial coherence
 - Make the lighting equation constant over the surface of each primitive

<table>
<thead>
<tr>
<th>Surface</th>
<th>Emissive</th>
<th>Ambient</th>
<th>Diffuse</th>
<th>Specular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissive</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ambient</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Diffuse</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Specular</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

\[I = I_E + K_A I_{AL} + \sum_i \left(K_D \langle \vec{N}, \vec{L}_i \rangle I_i + K_S \langle \vec{V}, \vec{R}_i \rangle^n I_i \right) \]
Flat Shading

- Can take advantage of spatial coherence
 - Make the lighting equation constant over the surface of each primitive

<table>
<thead>
<tr>
<th>Surface Type</th>
<th>Conditions</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissive</td>
<td>If the normal is constant over the primitive, and if the light is directional,</td>
<td>the diffuse component is the same for all points on the primitive</td>
</tr>
<tr>
<td>Ambient</td>
<td>If the normal is constant over the primitive, and if the light is directional,</td>
<td>the diffuse component is the same for all points on the primitive</td>
</tr>
<tr>
<td>Diffuse</td>
<td>If the normal is constant over the primitive, and if the light is directional, and if the direction to the viewer is constant over the primitive</td>
<td>the specular component is the same for all points on the primitive</td>
</tr>
<tr>
<td>Specular</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
I = I_E + K_AI_AL + \sum_i \left(K_D\langle \vec{N}, \vec{L}_i \rangle I_i + K_S\langle \vec{V}, \vec{R}_i \rangle^n I_i \right)
\]
Flat Shading

- Can take advantage of spatial coherence
 - Make the lighting equation constant over the surface of each primitive

<table>
<thead>
<tr>
<th>Surface Type</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissive</td>
<td>If the normal is constant over the primitive, and</td>
</tr>
<tr>
<td></td>
<td>if the light is directional, the diffuse component is the same for all points on the primitive</td>
</tr>
<tr>
<td>Ambient</td>
<td>If the normal is constant over the primitive,</td>
</tr>
<tr>
<td></td>
<td>if the light is directional, and</td>
</tr>
<tr>
<td></td>
<td>if the direction to the viewer is constant over the primitive</td>
</tr>
<tr>
<td>Diffuse</td>
<td>If the normal is constant over the primitive,</td>
</tr>
<tr>
<td></td>
<td>if the light is directional, and</td>
</tr>
<tr>
<td></td>
<td>if the direction to the viewer is constant over the primitive</td>
</tr>
<tr>
<td>Specular</td>
<td>If the normal is constant over the primitive,</td>
</tr>
<tr>
<td></td>
<td>if the light is directional, and</td>
</tr>
<tr>
<td></td>
<td>if the direction to the viewer is constant over the primitive</td>
</tr>
</tbody>
</table>

\[I = I_E + K_A I_{AL} + \sum_i \left(K_D \langle \vec{N}, \vec{L}_i \rangle I_i + K_S \langle \vec{V}, \vec{R}_i \rangle^n I_i \right) \]
Flat Shading

- Illuminate as though all light sources are directional, the polygon is flat, and is viewed from infinitely far away
 - $\langle \vec{N}, \vec{L}_i \rangle$ constant over surface
 - $\langle \vec{V}, \vec{R}_i \rangle$ constant over surface
 - I_i constant over surface

$$I = I_E + K_A I_{AL} + \sum_i \left(K_D \langle \vec{N}, \vec{L}_i \rangle I_i + K_S \langle \vec{V}, \vec{R}_i \rangle^n I_i \right)$$
Flat Shading

• One lighting calculation per polygon
 ◦ Assign all pixels inside each polygon the same color
Flat Shading

- Objects look like they are composed of polygons
 - OK for polyhedral objects
 - Not so good for smooth surfaces
Polygon Shading Algorithms

• Flat Shading
• **Gouraud Shading**
• Phong Shading
Gouraud Shading

- What if smooth surface is represented by polygonal mesh with a normal at each vertex?

\[
I = I_E + K_A I_{AL} + \sum_i \left(K_D \langle \hat{N}, \hat{L}_i \rangle I_i + K_S \langle \hat{V}, \hat{R}_i \rangle^n I_i \right)
\]
Gouraud Shading

• One lighting calculation per vertex
 ◦ Assign pixel colors inside polygon by interpolating colors computed at vertices
Gouraud Shading

- Linearly interpolate colors at vertices down and across scan lines
Gouraud Shading

• Linearly interpolate colors at vertices down and across scan lines

\[A = (1 - \alpha) \cdot I_1 + \alpha \cdot I_2 \]
\[B = (1 - \beta) \cdot I_2 + \beta \cdot I_3 \]

Note: The values of \(\alpha \) and \(\beta \) only need to be updated as we move to the next scan-line. The value of \(\gamma \) needs to be updated as we advance along the scan-line.
Gouraud Shading

- Produces smoothly shaded polygonal mesh
 - Continuous shading over adjacent polygons
Gouraud Shading

• Produces smoothly shaded polygonal mesh
 ◦ Continuous shading over adjacent polygons

What happens with large polygon & spotlight?
Gouraud Shading

- Produces smoothly shaded polygonal mesh
 - Continuous shading over adjacent polygons

What happens with large polygon & spotlight?
Polygon Shading Algorithms

- Flat Shading
- Gouraud Shading
- Phong Shading
Phong Shading

- One lighting calculation per pixel
 - Approximate surface normals for points inside polygons by linear interpolation of normals from vertices

\[
I = I_E + K_A I_{AL} + \sum_i \left(K_D \langle \hat{N}, \hat{L}_i \rangle I_i + K_S \langle \hat{V}, \hat{R}_i \rangle^n I_i \right)
\]
Phong Shading

- Linearly interpolate surface normals at vertices down and across scan lines

\[
\vec{A} = (1 - \alpha) \cdot \vec{N}_1 + \alpha \cdot \vec{N}_2 \\
\vec{B} = (1 - \beta) \cdot \vec{N}_2 + \beta \cdot \vec{N}_3 \\
\vec{N} = (1 - \gamma) \cdot \vec{A} + \gamma \cdot \vec{B}
\]
Phong Shading

- Linearly interpolate surface normals at vertices down and across scan lines
Polygon Shading Algorithms

- Wireframe
- Flat
- Gouraud
- Phong
Lighting
Camera Transformation
3D Rendering Pipeline (for direct illumination)
3D Primitives
Modeling Transformation
3D Modeling Coordinates
Camera Transformation
3D World Coordinates
Lighting
3D Camera Coordinates
Projection Transformation
3D Camera Coordinates
Clipping
2D Screen Coordinates
Viewport Transformation
2D Screen Coordinates
Scan Conversion
2D Image Coordinates
Image
3D Model
2D Window
2D Screen
Overview

• Scan conversion
 ◦ Figure out which pixels to fill

• Shading
 ◦ Determine a color for each filled pixel

• Depth test
 ◦ Determine when the color of a pixel comes from the front-most primitive
Hidden Surface Removal (HSR)

• Motivation

• Algorithms for HSR
 ○ Back-face detection
 ○ Depth sort
 ○ Ray casting
 ○ z-buffer
Motivation

In general, we don’t want to draw surfaces that are not visible to the viewer:

• Surfaces may be back-facing.
• Surfaces may intersect in 3D.
• Surfaces may intersect in the image plane.
Somewhere in here we have to decide which objects are visible, and which objects are hidden.
Visibility algorithms

[Sutherland '74]
Overview

• Motivation

• Algorithms for HSR
 ○ Back-face detection
 ○ BSP-Trees
 ○ Ray casting
 ○ z-buffer
Q: How do we test for back-facing polygons?

A: Dot product of the normal and view directions.

If $\langle \vec{V}, \vec{N} \rangle > 0$, then polygon is back-facing.
Back-face detection

This method breaks down for:

• Overlapping primitives
• Non-solid models and/or models without a well defined orientation.

In general, back-face removal expected to remove \approx half of polygon surfaces from further visibility tests.
A polygon is back-facing if \(\langle \vec{V}, \vec{N} \rangle > 0 \iff \vec{N}_z > 0 \)
A polygon is back-facing if $\langle \vec{V}, \vec{N} \rangle > 0 \iff \vec{N}_z > 0$

Note: When your graphics card does this, it does not use the normals you provide at the vertices for lighting. Instead it uses the cross-product of the triangle vertices, so make sure that the ordering of the vertices is consistent (e.g. CCW)
View-frustrum culling

If the shape is outside the viewing volume, we don’t have to draw it.
View-frustrum culling

If the shape is outside the viewing volume, we don’t have to draw it.
View-frustrum culling

3D Primitives

Modeling Transformation

3D Modeling Coordinates

Camera Transformation

3D World Coordinates

Lighting

3D World Coordinates

Projection Transformation

3D Camera Coordinates

Clipping

2D Screen Coordinates

Viewport Transformation

2D Screen Coordinates

Scan Conversion

2D Image Coordinates

Image

Trivial Reject
Ideal Solution

Painter’s Algorithm:

• Sort primitives front to back and draw the back ones first, over-writing pixel values with information from the front primitives as they are processed.

Problem:

• In general you can’t sort the primitives.
• ...Unless you are allowed to split them
BSP-Tree Rendering (Object Precision)

- BSP-Trees recursively partition space by planes
 - Given two primitives on either side of a plane, the one on the opposite side from the camera will always be further away.
 - Draw the further side first, and then draw the closer one
BSP-Tree Rendering (Object Precision)

• Draw further half first, then the closer one.
 • Draw right side of 1
 • Draw left side of 1
BSP-Tree Rendering (Object Precision)

• Draw further half first, then the closer one.
 • Draw right side of 1
 • Draw left side of 3
 • Draw right side of 3
 • Draw left side of 1
BSP-Tree Rendering (Object Precision)

• Draw further half first, then the closer one.
 • Draw right side of 1
 • Draw left side of 3
 • Draw D
 • Draw right side of 3
 • Draw left side of 1
BSP-Tree Rendering (Object Precision)

- Draw further half first, then the closer one.
 - Draw right side of 1
 - Draw left side of 3
 - Draw D
 - Draw right side of 3
 - Draw left side of 5
 - Draw right side of 5
 - Draw left side of 1
BSP-Tree Rendering (Object Precision)

- Draw further half first, then the closer one.
 - Draw right side of 1
 - Draw left side of 3
 - Draw D
 - Draw right side of 3
 - Draw left side of 5
 - Draw E
 - Draw right side of 5
 - Draw left side of 1
BSP-Tree Rendering (Object Precision)

- Draw further half first, then the closer one.
 - Draw right side of 1
 - Draw left side of 3
 - Draw D
 - Draw right side of 3
 - Draw left side of 5
 - Draw E
 - Draw right side of 5
 - Draw F
 - Draw left side of 1
BSP-Tree Rendering (Object Precision)

- Draw further half first, then the closer one.
 - Draw right side of 1
 - Draw left side of 3
 - Draw D
 - Draw right side of 3
 - Draw left side of 5
 - Draw E
 - Draw right side of 5
 - Draw F
 - Draw left side of 1
 - Draw left side of 2
 - Draw right side of 2
BSP-Tree Rendering (Object Precision)

- Draw further half first, then the closer one.
 - Draw right side of 1
 - Draw left side of 3
 - Draw D
 - Draw right side of 3
 - Draw left side of 5
 - Draw E
 - Draw right side of 5
 - Draw F
 - Draw left side of 1
 - Draw left side of 2
 - Draw left side of 4
 - Draw right side of 4
 - Draw right side of 2
BSP-Tree Rendering (Object Precision)

- Draw further half first, then the closer one.
 - Draw right side of 1
 - Draw left side of 3
 - Draw D
 - Draw right side of 3
 - Draw left side of 5
 - Draw E
 - Draw right side of 5
 - Draw F
 - Draw left side of 1
 - Draw left side of 2
 - Draw left side of 4
 - Draw A
 - Draw right side of 4
 - Draw right side of 2
BSP-Tree Rendering (Object Precision)

- Draw further half first, then the closer one.
 - Draw right side of 1
 - Draw left side of 3
 - Draw D
 - Draw right side of 3
 - Draw left side of 5
 - Draw E
 - Draw right side of 5
 - Draw F
 - Draw left side of 1
 - Draw left side of 2
 - Draw left side of 4
 - Draw A
 - Draw right side of 4
 - Draw B
 - Draw right side of 2
BSP-Tree Rendering (Object Precision)

- Draw further half first, then the closer one.
 - Draw right side of 1
 - Draw left side of 3
 - Draw D
 - Draw right side of 3
 - Draw left side of 5
 - Draw E
 - Draw right side of 5
 - Draw F
 - Draw left side of 1
 - Draw left side of 2
 - Draw left side of 4
 - Draw A
 - Draw right side of 4
 - Draw B
 - Draw right side of 2
 - Draw C
3D Rendering Pipeline

Binary Space Partition:
- View Independent
- Linear-time depth sort
Ray Casting

- Fire a ray for every pixel
 - If ray intersects multiple objects, take the closest
Ray Casting Pipeline

Ray casting
- \(P(p \log n) \) for \(p \) pixels
- May (or not) use pixel coherence
- Simple, but generally not used
z-Buffer

- Store color & depth of closest object at each pixel
 - Initialize depth of each pixel to ∞
 - Update only pixels whose depth is closer than in buffer

![Diagram of z-Buffer concept]

- $d=1$
- $d=2$
z-Buffer

- Store color & depth of closest object at each pixel
 - Initialize depth of each pixel to ∞
 - Update only pixels whose depth is closer than in buffer

Case 1 (Blue before Red):

- Blue $\rightarrow (d = 1) < (d = \infty)$:
 - Set $RGB = (0,0,1), d = 1$
- Red $\rightarrow (d = 2) > (d = 1)$:
 - Don’t change pixel
z-Buffer

- Store color & depth of closest object at each pixel
 - Initialize depth of each pixel to ∞
 - Update only pixels whose depth is closer than in buffer

Case 1 (Blue before Red):
- Blue $\rightarrow (d = 1) < (d = \infty)$:
 - Set $RGB = (0,0,1), d = 1$
- Red $\rightarrow (d = 2) > (d = 1)$:
 - Don’t change pixel

Case 2 (Red before Blue):
- Red $\rightarrow (d = 2) > (d = \infty)$:
 - Set $RGB = (1,0,0), d = 2$
- Blue $\rightarrow (d = 1) < (d = 2)$:
 - Set $RGB = (0,0,1), d = 1$
z-Buffer

- Store color & depth of closest object at each pixel
 - Initialize depth of each pixel to ∞
 - Update only pixels whose depth is closer than in buffer
 - Depths are interpolated from vertices, just like colors

\[
A = (1 - \alpha) \cdot d_1 + \alpha \cdot d
\]

\[
B = (1 - \beta) \cdot d_2 + \beta \cdot d_3
\]

\[
d = (1 - \gamma) \cdot A + \gamma \cdot B
\]
z-Buffer

Edge anti-aliasing becomes difficult because you want multiple triangles to write to the same pixel.

- Who sets the z-value?
Alpha values can cause problems:

- Need to know the ordering of primitives behind pixels for α-blending
- α-buffer supports linked list of surfaces at each pixel for better transparency support
- α-buffer also helps with anti-aliasing
3D Rendering Pipeline

3D Primitives
- **3D Modeling Coordinates**

Modeling Transformation
- **3D World Coordinates**

Camera Transformation
- **3D World Coordinates**

Lighting
- **3D Camera Coordinates**

Projection Transformation
- **2D Screen Coordinates**

Clipping
- **2D Screen Coordinates**

Viewport Transformation
- **2D Image Coordinates**

Scan Conversion
- **2D Image Coordinates**

Image

z-buffer comments
- Polygons rasterized in any order
- Requires additional memory
 - z-buffer size \approx frame buffer
- This is what your graphics card does!
3D Rendering Pipeline (for direct illumination)

3D Primitives

- 3D Primitives
- 3D Modeling Coordinates

Modeling Transformation

- 3D World Coordinates

Camera Transformation

- 3D Camera Coordinates

Lighting

- 3D Camera Coordinates

Projection Transformation

- 3D Camera Coordinates

Clipping

- 2D Screen Coordinates

Viewport Transformation

- 2D Screen Coordinates

Scan Conversion

- 2D Image Coordinates

Image

- 2D Image Coordinates

3D Model

- 2D Screen

2D Window
How do we average information from the three vertices of a triangle?

- Interpolate using weights determined by the 2D screen space projection.
- Interpolate using weights determined by the 3D locations.

It’s easier to do the interpolation in 2D.

Is there a difference?
Scan Conversion Example

A line segment in 2D projected onto a 1D screen.

How should we interpolate the information from vertices \(p_1 \) and \(p_2 \) at the pixel corresponding to ray \(R \)?
Scan Conversion Example

A line segment in 2D projected onto a 1D screen.

1. R intersects the projected line segment in the middle:
 - We should use equal contributions from p_1 and p_2.

\[z = 0 \quad z = 1 \]
Scan Conversion Example

A line segment in 2D projected onto a 1D screen.

1. R intersects the projected line segment in the middle:
 - We should use equal contributions from p_1 and p_2.

2. R intersects the 2D line segment closer to p_1:
 - We should use more information from p_1 than from p_2.

\[z = 0 \quad z = 1 \]
Scan Conversion Example

A line segment in 2D projected onto a 1D screen.

• How do we interpolate correctly?

\[z = 0 \quad z = 1 \]
Scan Conversion Example

A line segment in 2D projected onto a 1D screen.

- How do we interpolate correctly?

Recall: The 2D point \((x, z)\) maps to the point \((x/z)\) in 1D.

If \(p_1 = (x_1, z_1)\) and \(p_2 = (x_2, z_2)\), to find the blending value \(\alpha\) for a pixel falling at position \(x\) in the screen we need to solve:

\[
(1 - \alpha)(x_1, z_1) + \alpha(x_2, z_2) \rightarrow (x, 1)
\]

\[
((1 - \alpha)x_1 + \alpha x_2, (1 - \alpha)z_1 + \alpha z_2) \rightarrow (x, 1)
\]

\[
\frac{(1 - \alpha)x_1 + \alpha x_2}{(1 - \alpha)z_1 + \alpha z_2} = \frac{x}{1}
\]
Scan Conversion Example

A line segment in 2D projected onto a 1D screen.

• How do we interpolate correctly?

Recall: The 2D point \((x, z)\) maps to the point \((x/z)\) in 1D.

If \(p_1 = (x_1, z_1)\) and \(p_2 = (x_2, z_2)\), to find the blending value \(\alpha\) for a pixel falling at position \(x\) in the screen we need to solve:

\[
\frac{(1 - \alpha)x_1 + \alpha x_2}{(1 - \alpha)z_1 + \alpha z_2} = \frac{x}{1}
\]

This is not the same as solving for the blending value in the image plane:

\[
(1 - \alpha) \frac{x_1}{z_1} + \alpha \frac{x_2}{z_2} = \frac{x}{1}
\]

To compute the interpolation weights correctly, we need to perform a perspective divide:
Scan Conversion Example

courtesy of H. Pfister