Acceleration and Illumination

Michael Kazhdan
(600.457)

HB Ch. 14.1, 14.2
FvDFH 16.1, 16.2
Ray Casting

Image RayCast(Camera camera, Scene scene, int width, int height) {
 Image image = new Image(width, height);
 for (int i = 0; i < width; i++) {
 for (int j = 0; j < height; j++) {
 Ray ray = ConstructRayThroughPixel(camera, i, j);
 Intersection hit = FindIntersection(ray, scene);
 image[i][j] = GetColor(scene, ray, hit);
 }
 }
 return image;
}
Ray Casting

```java
Image RayCast(Camera camera, Scene scene, int width, int height) {
    Image image = new Image(width, height);
    for (int i = 0; i < width; i++) {
        for (int j = 0; j < height; j++) {
            Ray ray = ConstructRayThroughPixel(camera, i, j);
            Intersection hit = FindIntersection(ray, scene);
            image[i][j] = GetColor(scene, ray, hit);
        }
    }
    return image;
}
```
Illumination

• How do we compute radiance for a sample ray?

\[
\text{image}[i][j] = \text{getColor}(\text{scene}, \text{ray}, \text{hit});
\]
Goal

• Must derive models for ...
 ○ Emission at light sources
 ○ Direct light on surface points
 ○ Scattering at surfaces
 ○ Reception at the camera

• Desirable features …
 ○ Concise
 ○ Efficient to compute
 ○ “Accurate”
Overview

• Direct Illumination
 ◦ Emission at a light source
 ◦ Reflection off the surface

• Global illumination
 ◦ Shadows
 ◦ Inter-object reflections
 ◦ Transmissions
Overview

• Direct Illumination
 ◦ Emission at light sources
 ◦ Reflection off the surface

• Global illumination
 ◦ Shadows
 ◦ Inter-object reflections
 ◦ Transmissions

Lambertian Shading
Overview

• Direct Illumination
 ◦ Emission at light sources
 ◦ Reflection off the surface

• Global illumination
 ◦ Shadows
 ◦ Inter-object reflections
 ◦ Transmissions
Overview

• Direct Illumination
 ◦ Emission at light sources
 ◦ Reflection off the surface

• Global illumination
 ◦ Shadows
 ◦ Inter-object reflections
 ◦ Transmissions

Shadow Computation
Overview

• Direct Illumination
 ◦ Emission at light sources
 ◦ Reflection off the surface

• Global illumination
 ◦ Shadows
 ◦ Inter-object reflections
 ◦ Transmissions
Overview

• Direct Illumination
 - Emission at light sources
 - Reflection off the surface

• Global illumination
 - Shadows
 - Inter-object reflections
 - Transmissions
Overview

• Direct Illumination
 ◦ Emission at light sources
 ◦ Reflection off the surface

• Global illumination
 ◦ Shadows
 ◦ Inter-object reflections
 ◦ Transmissions
Modeling Light Sources

- $I_L(x, y, z, \theta, \phi, \lambda)$
 - describes the intensity of energy (I),
 - leaving a light source (L),
 - at a particular angle (θ, ϕ)
 - arriving at a location (x, y, z),
 - with a particular wavelength (λ)
Empirical Models

• Ideally measure irradiant energy for “all” situations
 ◦ Too much storage
 ◦ Difficult in practice
Simplified Light Source Models

- Simple mathematical models:
 - Point light
 - Directional light
 - Spot light
Point Light Source

• Models omni-directional point source
 ◦ intensity I,
 ◦ position $p = (p_x, p_y, p_z)$,
 ◦ factors (k_c, k_l, k_q) for attenuation with distance (δ)

\[
I_L = \frac{I}{k_c + k_l \cdot \delta + k_q \cdot \delta^2}
\]

The light hitting a surface point q comes in from direction $q - p$.
Directional Light Source

• Models point light source at infinity
 - intensity I,
 - direction $\vec{d} = (d_x, d_y, d_z)$

No attenuation with distance

$k_c = 1, k_l = k_q = 0$

$I_L = I$

The light hitting a surface point q comes in from direction \vec{d}.
Spot Light Source

- Models point light source with direction
 - intensity I,
 - position $p = (p_x, p_y, p_z)$,
 - attenuation (k_c, k_l, k_q)
 - direction $\vec{d} = (d_x, d_y, d_z)$
 - cut-off and drop-off (γ, α)

How can we modify point light to decrease as γ increases?

$$I_L = \frac{I}{k_c + k_l \cdot \delta + k_q \cdot \delta^2}$$
Spot Light Source

- Models point light source with direction
 - intensity I,
 - position $p = (p_x, p_y, p_z)$,
 - attenuation (k_c, k_l, k_q)
 - direction $\hat{d} = (d_x, d_y, d_z)$
 - cut-off and drop-off (γ, α)

The light hitting a surface point q comes in from direction $q - p$.

$$I_L = \begin{cases}
I \cdot \langle \hat{d}, \hat{v} \rangle^\alpha & \text{if } \langle \hat{d}, \hat{v} \rangle > \cos \gamma \\
\frac{I \cdot \langle \hat{d}, \hat{v} \rangle^\alpha}{k_c + k_l \cdot \delta + k_q \cdot \delta^2} & \text{otherwise}
\end{cases}$$
Overview

• Direct Illumination
 ◦ Emission at light sources
 ◦ Direct light at surface points

• Global illumination
 ◦ Shadows
 ◦ Transmissions
 ◦ Inter-object reflections
Modeling Surface Reflectance

- \(R_S(\theta, \phi, \lambda, \gamma, \psi) \)
 - describes the fraction of incident energy (\(R \)),
 - at the surface (\(S \)),
 - arriving from direction (\(\theta, \phi \)),
 - with wavelength (\(\lambda \)),
 - leaving in direction (\(\gamma, \psi \)),
Empirical Models

• Ideally measure radiant energy for “all” combinations of incident angles
 ◦ Too much storage
 ◦ Difficult in practice
Simple Reflectance Model

- Simple analytic model:
 - diffuse reflection +
 - specular reflection +
 - emission +
 - “ambient”

Based on model proposed by Phong
Simple Reflectance Model

• Simple analytic model:
 ◦ diffuse reflection +
 ◦ specular reflection +
 ◦ emission +
 ◦ “ambient”

Based on model proposed by Phong
Diffuse Reflection

• Assume surface reflects equally in all directions
 ◦ Examples: chalk, clay
Diffuse Reflection

• How much light is reflected?
 ◦ Depends on angle of incident light
 ◦ aka “Lambertian”
Diffuse Reflection

• How much light is reflected?
 ◦ Depends on angle of incident light

\[dL = dA \cdot \cos \theta \]
Diffuse Reflection

• Lambertian model
 ◦ cosine law: \(\cos \theta = \langle \vec{N}, \vec{L} \rangle \)
 ◦ \(K_D \) is surface property
 ◦ \(I_L \) is incoming light

\[
I_D = K_D \cdot \langle \vec{N}, \vec{L} \rangle \cdot I_L
\]
Diffuse Reflection

• Note that lights and surface properties have R, G, and B components!
 ○ So amount of red light reflected is not necessarily equal to amount of green light, etc.
 ○ You will need to run calculation below on EACH color channel
 ○ This holds true for all lighting calculations

\[I_{D}^{\text{Red}} = K_{D}^{\text{Red}} \cdot \langle \vec{N}, \vec{L} \rangle \cdot I_{L}^{\text{Red}} \]
Diffuse Reflection

• Assume surface reflects equally in all directions
 ◦ Examples: chalk, clay
Simple Reflectance Model

- Simple analytic model:
 - diffuse reflection +
 - specular reflection +
 - emission +
 - “ambient”
Specular Reflection

• Reflection is strongest near mirror angle
 ◦ Examples: metals, shiny apples
Specular Reflection

How much light is seen?

Depends on how well the:

- reflected direction, and
- direction to the viewer

line up.
Specular Reflection

• Phong Model
 ◦ $\cos^n \alpha$

This is a physically-motivated hack!

$\mathbf{I}_S = K_S \cdot \langle \mathbf{V}, \mathbf{R} \rangle^n \cdot I_L$
Specular Reflection

• Reflection is strongest near mirror angle
 ◦ Examples: metals, shiny apples
Simple Reflectance Model

- Simple analytic model:
 - diffuse reflection +
 - specular reflection +
 - emission +
 - “ambient”
Emission

Represents light emanating directly from a surface that cannot be described by the three light sources

\[\text{Emission} \neq 0 \]
Emission

\[I_E = I_E \]

Emission $\neq 0$
Simple Reflectance Model

- Simple analytic model:
 - diffuse reflection +
 - specular reflection +
 - emission +
 - “ambient”
Ambient Term

- Represents reflection of all indirect illumination

This is a total hack (avoids complexity of global illumination)!
Ambient Term

- Represents reflection of all indirect illumination

\[I_A = K_A \cdot I_L^A \]
Simple Reflectance Model

- Simple analytic model:
 - diffuse reflection +
 - specular reflection +
 - emission +
 - "ambient"

Light position dependent
Light + viewer position dependent
Simple Reflectance Model

- Simple analytic model:
 - diffuse reflection +
 - specular reflection +
 - emission +
 - “ambient”

Light position dependent
Light + viewer position dependent
Surface Illumination Calculation

- Single light source:

\[
I = I_E + K_A \cdot I_L^A + K_D \cdot \langle \hat{N}, \hat{L} \rangle \cdot I_L + K_S \cdot \langle \hat{V}, \hat{R} \rangle^n \cdot I_L
\]
Surface Illumination Calculation

- Multiple light source:

\[I = I_E + \sum_{L} \left(K_A \cdot I^A_L + K_D \cdot \langle \vec{N}, \vec{L} \rangle \cdot I_L + K_S \cdot \langle \vec{V}, \vec{R} \rangle^n \cdot I_L \right) \]