3D Rendering and Ray Casting

Michael Kazhdan

(600.457)

HB Ch. 13.7, 14.6
FvDFH 15.5, 15.10
Rendering

- Generate an image from geometric primitives

Geometric Primitives (3D) ➤ Rendering ➤ Raster Image (2D)
3D Rendering Example

What issues must be addressed by a 3D rendering system?
Overview

• 3D scene representation
• 3D viewer representation
• What do we see?
• How does it look?
Overview

• 3D scene representation
• 3D viewer representation
• What do we see?
• How does it look?

How is the 3D scene described in a computer?
3D Scene Representation

- Scene is usually approximated by 3D primitives
 - Point
 - Line segment
 - Polygon
 - Polyhedron
 - Curved surface
 - Solid object
 - etc.
3D Point

- Specifies a location
3D Point

- Specifies a location
 - Represented by three coordinates
 - Infinitely small

```
struct Point3D {
    float x, y, z;
};
```
3D Vector

- Specifies a direction and a magnitude
3D Vector

• Specifies a direction and a magnitude
 ○ Represented by three coordinates
 ○ Magnitude $\|\vec{v}\| = \sqrt{dx^2 + dy^2 + dz^2}$
 ○ Has no location

```c
struct Vector3D {
    float dx, dy, dz;
};
```

$\vec{v} = (dx, dy, dz)$
3D Vector

- Specifies a direction and a magnitude
 - Represented by three coordinates
 - Magnitude $||\mathbf{v}|| = \sqrt{d x^2 + d y^2 + d z^2}$
 - Has no location

- Dot product of two 3D vectors
 - $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = d x_1 \cdot d x_2 + d y_1 \cdot d y_2 + d z_1 \cdot d z_2$
 - $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = ||\mathbf{v}_1|| \cdot ||\mathbf{v}_2|| \cdot \cos \theta$
3D Vector

- Specifies a direction and a magnitude
 - Represented by three coordinates
 - Magnitude $||\vec{v}|| = \sqrt{dx^2 + dy^2 + dz^2}$
 - Has no location

- Dot product of two 3D vectors
 - $\langle \vec{v}_1, \vec{v}_2 \rangle = dx_1 \cdot dx_2 + dy_1 \cdot dy_2 + dz_1 \cdot dz_2$
 - $\langle \vec{v}_1, \vec{v}_2 \rangle = ||\vec{v}_1|| \cdot ||\vec{v}_2|| \cdot \cos \theta$

- Cross product of two 3D vectors
 - $\vec{v}_1 \times \vec{v}_2 = \text{Vector normal to plane } \nu_1, \nu_2$
 - $||\vec{v}_1 \times \vec{v}_2|| = ||\vec{v}_1|| \cdot ||\vec{v}_2|| \cdot \sin \theta$
Cross Product: Review

• Let \(\vec{v}_1 = \vec{v}_2 \times \vec{v}_3 \):

 \(\begin{align*}
 dx_1 &= dy_2 \cdot dz_3 - dz_2 \cdot dy_3 \\
 dy_1 &= dz_2 \cdot dx_3 - dx_2 \cdot dz_3 \\
 dz_1 &= dx_2 \cdot dy_3 - dy_2 \cdot dx_3
 \end{align*} \)

• \(\vec{v} \times \vec{w} = -\vec{w} \times \vec{v} \) (remember “right-hand” rule)

• We can show:

 \(\vec{v} \times \vec{w} = \| \vec{v} \| \cdot \| \vec{w} \| \cdot \sin \theta \cdot \vec{n} \),

 where \(\vec{n} \) is unit vector normal to \(\vec{v} \) and \(\vec{w} \)

 \(\vec{v} \times \vec{v} = 0 \)

• http://physics.syr.edu/courses/java-suite/crosspro.html
3D Line Segment

- Linear path between two points
3D Line Segment

• Use a linear combination of two points

 ◦ Parametric representation:

 » \(p(t) = p_1 + t \cdot (p_2 - p_1), \quad (0 \leq t \leq 1) \)

struct Segment3D
{
 Point3D p1, p2;
};
3D Ray

- Line segment with one endpoint at infinity
 - Parametric representation:
 \[p(t) = p_1 + t \cdot \vec{v}, \quad (0 \leq t < \infty) \]

```c
struct Ray3D {
    Point3D p1;
    Vector3D v;
};
```
3D Line

- Line segment with both endpoints at infinity
 - Parametric representation:
 \[p(t) = p_1 + t \cdot \mathbf{v}, \quad (-\infty < t < \infty) \]

```c
struct Line3D {
    Point3D p1;
    Vector3D v;
};
```
3D Plane

- A linear combination of three points p_1, p_2, and p_3
3D Plane

• A linear combination of three points
 ○ Implicit representation:
 » \(\Phi(p) = \langle p - \text{Origin}, \vec{n} \rangle - d = 0 \), or
 » \(\Phi(p) = ax + by + cz - d = 0 \)

```
struct Plane3D {
    Vector3D n;
    float d;
};
```

○ \(\vec{n} \) is the plane normal
 » (May be) unit-length vector
 » Perpendicular to plane

○ \(d \) is the signed (weighted) distance of the plane from the origin.
3D Polygon

- Area “inside” a sequence of coplanar points
 - Triangle
 - Quadrilateral
 - Convex
 - Star-shaped
 - Concave
 - Self-intersecting

```plaintext
struct Polygon3D {
    Point3D *points;
    int npoints;
};
```

Points are in counter-clockwise order
- Holes (use > 1 polygon struct)
3D Sphere

• All points at distance r from center point $c = (c_x, c_y, c_z)$

 ◦ Implicit representation:

 \[\Phi(p) = \|p - c\|^2 - r^2 = 0 \]

 ◦ Parametric representation:

 \[x(\phi, \theta) = r \cdot \cos \phi \cdot \sin \theta + c_x \]
 \[y(\phi, \theta) = r \cdot \cos \phi \cdot \sin \theta + c_y \]
 \[z(\theta, \phi) = r \cdot \sin \phi + c_z \]

```c
struct Sphere3D {
    Point3D center;
    float radius;
};
```
Other 3D primitives

- Cone
- Cylinder
- Ellipsoid
- Box
- Etc.
3D Geometric Primitives

• More detail on 3D modeling later in course
 ○ Point
 ○ Line segment
 ○ Polygon
 ○ Polyhedron
 ○ Curved surface
 ○ Solid object
 ○ etc.
Overview

- 3D scene representation
- 3D viewer representation
- What do we see?
- How does it look?

How is the viewing device described in a computer?
Camera Models

- The most common model is pin-hole camera
 - All captured light rays arrive along paths toward focal point without lens distortion (everything is in focus)

Other models consider ...
- Depth of field
- Motion blur
- Lens distortion
Camera Parameters

- What are the parameters of a camera?
Camera Parameters

- **Position**
 - Eye position: `Point3D eye`

- **Orientation**
 - View direction: `Vector3D view`
 - Up direction: `Vector3D up`

- **Aperture**
 - Field of view: `float xFov, yFov`
 - Film plane
 - (View plane normal)
Other Models: Depth of Field

Close Focused

Distance Focused

P. Haeberli
Other Models: Motion Blur

- Mimics effect of open camera shutter
- Gives perceptual effect of high-speed motion
- Generally involves temporal super-sampling

Brostow & Essa
Traditional Pinhole Camera

• The film sits behind the pinhole of the camera.
Traditional Pinhole Camera

- The film sits behind the pinhole of the camera.
- Rays come in from the outside, pass through the pinhole, and hit the film plane.
Traditional Pinhole Camera

- The film sits behind the pinhole of the camera.
- Rays come in from the outside, pass through the pinhole, and hit the film plane.

Photograph is upside down
Virtual Camera

• The film sits in front of the pinhole of the camera.
Virtual Camera

- The film sits in front of the pinhole of the camera.
- Rays come in from the outside, pass through the film plane, and hit the pinhole.
Virtual Camera

- The film sits in front of the pinhole of the camera.
- Rays come in from the outside, pass through the film plane, and hit the pinhole.
Overview

- 3D scene representation
- 3D viewer representation

Ray Casting
- Where are we looking?
- What do we see?
- How does it look?
Ray Casting

• For each sample …
 ◦ **Where**: Construct ray from eye through view plane
 ◦ **What**: Find **first** surface intersected by ray through pixel
 ◦ **How**: Compute color sample based on surface radiance
Ray Casting

• Simple implementation:

```java
Image RayCast(Camera camera, Scene scene, int width, int height) {
    Image image = new Image(width, height);
    for (int i = 0; i < width; i++) {
        for (int j = 0; j < height; j++) {
            Ray ray = ConstructRayThroughPixel(camera, i, j);
            Intersection hit = FindIntersection(ray, scene);
            image[i][j] = GetColor(hit);
        }
    }
    return image;
}
```
Ray Casting

Where?

```java
Image RayCast(Camera camera, Scene scene, int width, int height)
{
    Image image = new Image(width, height);
    for (int i = 0; i < width; i++) {
        for (int j = 0; j < height; j++) {
            Ray ray = ConstructRayThroughPixel(camera, i, j);
            Intersection hit = FindIntersection(ray, scene);
            image[i][j] = GetColor(hit);
        }
    }
    return image;
}
```
Constructing a Ray Through a Pixel

p_0

v

$p[i][j]$
Constructing a Ray Through a Pixel

The ray has to originate at p_0, the position of the camera. So the equation for the ray is of the form:

$$\text{Ray}(t) = p_0 + t \cdot \vec{v}$$
Constructing a Ray Through a Pixel

If the ray passes through the point $p[i][j]$, then the solution for \mathbf{v} is:

$$
\mathbf{v} = \frac{p[i][j] - p_0}{\|p[i][j] - p_0\|}
$$
If $p[i][j]$ represents the (i,j)-th pixel of the image, what is its position?
Constructing Ray Through a Pixel

- 2D Example: Side view of camera at \(p_0 \)
 - Where is the \(i \)-th pixel, \(p[i] \)? \((i \in [0, \text{height} - 1])\)

\(\theta \) = frustum half-angle (given), or field of view
\(d \) = distance to view plane (arbitrary = you pick)
Constructing Ray Through a Pixel

• 2D Example: Side view of camera at p_0
 ◦ Where is the i-th pixel, $p[i]$? ($i \in [0, \text{height})$)

$\theta = \text{frustum half-angle (given), or field of view}$

$d = \text{distance to view plane (arbitrary = you pick)}$

$$p_1 = p_0 + d \cdot \text{towards} - d \cdot \tan \theta \cdot \text{up}$$
$$p_2 = p_0 + d \cdot \text{towards} + d \cdot \tan \theta \cdot \text{up}$$
Constructing Ray Through a Pixel

• 2D Example: Side view of camera at p_0

 Where is the i-th pixel, $p[i]$? ($i \in [0, \text{height}]$)

 $\theta =$ frustum half-angle (given), or field of view
 $d =$ distance to view plane (arbitrary = you pick)

 $$p_1 = p_0 + d \cdot \text{towards} - d \cdot \tan \theta \cdot \text{up}$$
 $$p_2 = p_0 + d \cdot \text{towards} + d \cdot \tan \theta \cdot \text{up}$$

 $$p[i] = p_1 + \left(\frac{i + 0.5}{\text{height}} \right) \cdot (p_2 - p_1)$$
 $$= p_1 + \left(\frac{i + 0.5}{\text{height}} \right) \cdot 2 \cdot d \cdot \tan \theta \cdot \text{up}$$
Constructing Ray Through a Pixel

• 2D Example:

The ray passing through the \(i\)-th pixel is defined by:

\[
\text{Ray}(t) = p_0 + t \cdot \hat{v}
\]

○ \(p_0\): camera position

○ \(\hat{v}\): direction to the \(i\)-th pixel:

\[
\hat{v} = \frac{p[i] - p_0}{\|p[i] - p_0\|}
\]

○ \(p[i]\): \(i\)-th pixel location:

\[
p[i] = p_1 + \left(\frac{i + 0.5}{\text{height}}\right) \cdot (p_2 - p_1)
\]

○ \(p_1\) and \(p_2\) are the endpoints of the view plane:

\[
p_1 = p_0 + d \cdot \text{towards} - d \cdot \tan \theta \cdot \text{up}
\]

\[
p_2 = p_0 + d \cdot \text{towards} + d \cdot \tan \theta \cdot \text{up}
\]
Constructing Ray Through a Pixel

- Figuring out how to do this in 3D is assignment 2
Ray Casting

Where?

```java
Image RayCast(Camera camera, Scene scene, int width, int height) {
    Image image = new Image(width, height);
    for (int i = 0; i < width; i++) {
        for (int j = 0; j < height; j++) {
            Ray ray = ConstructRayThroughPixel(camera, i, j);
            Intersection hit = FindIntersection(ray, scene);
            image[i][j] = GetColor(hit);
        }
    }
    return image;
}
```
Ray Casting

What?

Image RayCast(Camera camera, Scene scene, int width, int height)
{
 Image image = new Image(width, height);
 for (int i = 0; i < width; i++) {
 for (int j = 0; j < height; j++) {
 Ray ray = ConstructRayThroughPixel(camera, i, j);
 Intersection hit = FindIntersection(ray, scene);
 image[i][j] = GetColor(hit);
 }
 }
 return image;
}
Ray-Scene Intersection

- Intersections with geometric primitives
 - Sphere
 - Triangle
Ray-Sphere Intersection

Ray: \(p(t) = p_0 + t \cdot \vec{v}, \quad (0 \leq t < \infty) \)
Sphere: \(\Phi(p) = ||p - c||^2 - r^2 = 0 \)
Ray-Sphere Intersection

Ray: \(p(t) = p_0 + t \cdot \vec{v}, \quad (0 \leq t < \infty) \)
Sphere: \(\Phi(p) = \|p - c\|^2 - r^2 = 0 \)

Substituting for \(p(t) \), we get:
\[
\Phi(t) = \|p_0 - t \cdot \vec{v} - c\|^2 - r^2 = 0
\]
Ray-Sphere Intersection

Ray: \(p(t) = p_0 + t \cdot \hat{v}, \quad (0 \leq t < \infty) \)

Sphere: \(\Phi(p) = \|p - c\|^2 - r^2 = 0 \)

Substituting for \(p(t) \), we get:
\[
\Phi(t) = \|p_0 - t \cdot \hat{v} - c\|^2 - r^2 = 0
\]

Solve quadratic equation:
\[
a \cdot t^2 + b \cdot t + c = 0
\]
where:
\[
\begin{align*}
a &= 1 \\
b &= 2\langle \hat{v}, p_0 - c \rangle \\
c &= \|p_0 - c\|^2 - r^2
\end{align*}
\]
Ray-Sphere Intersection

Ray: \(p(t) = p_0 + t \cdot \vec{v}, \quad (0 \leq t < \infty) \)

Sphere: \(\Phi(p) = \|p - c\|^2 - r^2 = 0 \)

Substituting for \(p(t) \), we get:
\[
\Phi(t) = \|p_0 - t \cdot \vec{v} - c\|^2 - r^2 = 0
\]

Solve quadratic equation:
\[
a \cdot t^2 + b \cdot t + c = 0
\]
where:

Generally, there are two solutions to the quadratic equation, giving rise to points \(p \) and \(p' \).
Want to return the first positive hit.
Ray-Sphere Intersection

- Need normal vector at intersection for lighting calculations:
 \[\vec{n} = \frac{\vec{p} - \vec{c}}{||\vec{p} - \vec{c}||} \]
Ray-Scene Intersection

• Intersections with geometric primitives
 ◦ Sphere
 » Triangle
Ray-Triangle Intersection

- First, intersect ray with plane
- Then, check if point is inside triangle
Ray-Plane Intersection

Ray: \(p(t) = p_0 + t \cdot \vec{v}, \quad (0 \leq t < \infty) \)
Plane: \(\Phi(p) = \langle p, \vec{n} \rangle - d = 0 \)

Substituting for \(p \), we get:
\[
\Phi(t) = \langle p_0 + t \cdot \vec{v}, \vec{n} \rangle - d = 0
\]

Solution:
\[
t = -\frac{\langle p_0, \vec{n} \rangle - d}{\langle \vec{v}, \vec{n} \rangle}
\]

Algebraic Method
Ray-Triangle Intersection I

- Check if point is inside triangle algebraically:
 - Generate triangles by connecting the ray source to each edge
 - Check if the point of intersection is above each of these triangles

For each side of triangle

\[\vec{v}_1 = T_1 - p_0 \]
\[\vec{v}_2 = T_2 - p_0 \]
\[\vec{n}_1 = \vec{v}_2 \times \vec{v}_1 \]

if (\langle p - p_0, \vec{n}_1 \rangle < 0) return FALSE;
Ray-Triangle Intersection II

• Check if point is inside triangle parametrically

A point \(p \) is inside the triangle iff. it can be expressed as the weighted average of the corners:

\[
p = \alpha \cdot T_1 + \beta \cdot T_2 + \gamma \cdot T_3
\]

where:

\[
0 \leq \alpha, \beta, \gamma \leq 1
\]
\[
\alpha + \beta + \gamma = 1
\]
Ray-Triangle Intersection II

- Check if point is inside triangle parametrically

Solve for α, β, γ such that:

$$ p = \alpha \cdot T_1 + \beta \cdot T_2 + \gamma \cdot T_3 $$

And

$$ \alpha + \beta + \gamma = 1 $$

Check if the point is in the triangle:

$$ 0 \leq \alpha, \beta, \gamma \leq 1 $$