Image Processing, Warping, and Sampling

Michael Kazhdan

(600.457)

HB Ch. 4.8
FvDFH Ch. 14.10
Outline

- Image Processing
 - Image Warping
 - Image Sampling
Image Processing

• What about the case when the modification that we would like to make to a pixel depends on the pixels around it?
 ○ Blurring
 ○ Edge Detection
 ○ Etc.
Multi-Pixel Operations

Stationary/Local Filtering

• In the simplest case, we define a mask of weights telling us how values at adjacent pixels should be combined to generate the new value.
Blurring

- To blur across pixels, define a mask:
 - Whose values are non-negative
 - Whose value is largest at the center pixel
 - Whose entries sum to one.

Original

Blur

$$\text{Filter} = \begin{bmatrix} \frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\ \frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\ \frac{1}{16} & \frac{2}{16} & \frac{1}{16} \end{bmatrix}$$
Blurring

Pixel(x,y): red = 36
 green = 36
 blue = 0

Filter = \[
\begin{bmatrix}
\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\
\frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\
\frac{1}{16} & \frac{2}{16} & \frac{1}{16}
\end{bmatrix}
\]
Blurring

Pixel(x,y): red = 36
green = 36
blue = 0

Filter =

\[
\begin{bmatrix}
\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\
\frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\
\frac{1}{16} & \frac{2}{16} & \frac{1}{16}
\end{bmatrix}
\]

Pixel(x,y).red and its red neighbors

Original
Blurring

New value for Pixel(x,y).red =

\[
\begin{align*}
\text{New value for Pixel}(x,y).\text{red} &= (36 \times \frac{1}{16}) + (109 \times \frac{2}{16}) + (146 \times \frac{1}{16}) \\
&+ (32 \times \frac{2}{16}) + (36 \times \frac{4}{16}) + (109 \times \frac{2}{16}) \\
&+ (32 \times \frac{1}{16}) + (36 \times \frac{2}{16}) + (73 \times \frac{1}{16})
\end{align*}
\]

<table>
<thead>
<tr>
<th></th>
<th>X-1</th>
<th>X</th>
<th>X+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y-1</td>
<td>36</td>
<td>109</td>
<td>146</td>
</tr>
<tr>
<td>Y</td>
<td>32</td>
<td>36</td>
<td>109</td>
</tr>
<tr>
<td>Y+1</td>
<td>32</td>
<td>36</td>
<td>73</td>
</tr>
</tbody>
</table>

- Pixel(x,y).red and its red neighbors

Filter =

\[
\begin{bmatrix}
\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\
\frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\
\frac{1}{16} & \frac{2}{16} & \frac{1}{16}
\end{bmatrix}
\]
Blurring

New value for Pixel(x,y).red = 62.69

<table>
<thead>
<tr>
<th>Y - 1</th>
<th>X - 1</th>
<th>X</th>
<th>X + 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>109</td>
<td>146</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>36</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>36</td>
<td>73</td>
<td></td>
</tr>
</tbody>
</table>

Pixel(x,y).red and its red neighbors

Filter =

\[
\begin{bmatrix}
\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\
\frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\
\frac{1}{16} & \frac{2}{16} & \frac{1}{16}
\end{bmatrix}
\]
Blurring

New value for Pixel(x,y).red = 63

Original

Blur
Blurring

- Repeat for each pixel and each color channel

Note 1: Keep source and destination separate to avoid “drift”.

Note 2: For boundary pixels, not all neighbors are used, and you need to normalize the mask so that the sum of the values is correct.
Blurring

- In general, the mask can have arbitrary size:
 - We can express a smaller mask as a bigger one by padding with zeros.

\[
\begin{bmatrix}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{bmatrix} / 16
\]

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 \\
0 & 2 & 4 & 2 & 0 \\
0 & 1 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix} / 16
\]
In general, the mask can have arbitrary size:

- We can have more non-zero entries to give rise to a wider blur.

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 \\
0 & 2 & 4 & 2 & 0 \\
0 & 1 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\quad /16
\quad \begin{bmatrix}
0 & 1 & 2 & 1 & 0 \\
1 & 2 & 4 & 2 & 1 \\
2 & 4 & 8 & 4 & 2 \\
1 & 2 & 4 & 2 & 1 \\
0 & 1 & 2 & 1 & 0
\end{bmatrix}
\quad /48
\]

Original Narrow Blur Wide Blur
Blurring

• A general way for defining the entries of an $n \times n$ mask is to use the values of a Gaussian:

$$\text{GaussianMask}[i][j] = e^{-\frac{d_i^2 + d_j^2}{2\sigma^2}}$$

- σ equals the mask radius ($n/2$ for an $n \times n$ mask)
- d_i is i’s horizontal distance from the center pixel
- d_j is j’s vertical distance from the center pixel
- Don’t forget to normalize!
Edge Detection

- An edge is a point in the image where the image is “far” from constant.
Edge Detection

- To find the edges in an image, define a mask:
 - Whose value is largest at the center pixel
 - Whose entries sum to zero.

- Edge pixels are those whose value is larger (on average) than those of its neighbors.

Filter = \[\frac{1}{8} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix} \]

Original Detected Edges
Edge Detection

Pixel(x,y): red = 36
green = 36
blue = 0

Filter = \frac{1}{8} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}
Edge Detection

Original

Pixel\((x,y)\): red = 36
 green = 36
 blue = 0

\[
\begin{array}{ccc}
X - 1 & X & X + 1 \\
Y - 1 & 36 & 109 & 146 \\
Y & 32 & 36 & 109 \\
Y + 1 & 32 & 36 & 73 \\
\end{array}
\]

Pixel\((x,y)\).red and its red neighbors

Filter = \(\frac{1}{8} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix} \)
Edge Detection

Original

New value for Pixel(x,y).red =

\[
\begin{align*}
(36 \times -1/8) &+ (109 \times -1/8) + (146 \times -1/8) \\
(32 \times -1/8) &+ (36 \times 1) + (109 \times -1/8) \\
(32 \times -1/8) &+ (36 \times -1/8) + (73 \times -1/8)
\end{align*}
\]

Pixel(x,y).red and its red neighbors

Filter = \(\frac{1}{8} \begin{bmatrix}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1
\end{bmatrix} \)
Edge Detection

Original

<table>
<thead>
<tr>
<th>Y-1</th>
<th>X-1</th>
<th>X</th>
<th>X+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>109</td>
<td>146</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Y</th>
<th>32</th>
<th>36</th>
<th>109</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Y+1</th>
<th>32</th>
<th>36</th>
<th>73</th>
</tr>
</thead>
</table>

New value for Pixel(x,y).red = -285/8

Pixel(x,y).red and its red neighbors

Filter = \[\frac{1}{8} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix} \]
Edge Detection

Original

<table>
<thead>
<tr>
<th>Y-1</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>109</td>
<td>146</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Y</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>36</td>
<td>109</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Y+1</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>36</td>
<td>73</td>
</tr>
</tbody>
</table>

Pixel(x,y).red and its red neighbors

New value for Pixel(x,y).red = 0

Filter = \[\frac{1}{8} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix} \]
Edge Detection

New value for Pixel(x,y).red = 0

Filter = $\frac{1}{8} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$

Original

Detected Edges
Edge Detection

New value for Pixel(x,y).red = 0

Filter = \[\frac{1}{8} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix} \]

Note: Edge values are not colors, so we have to rescale/remap for visualization.
Outline

• Image Processing
• Image Warping
• Image Sampling
Image Warping

• Move pixels of image
 ◦ Mapping
 ◦ Resampling
Overview

• Mapping
 ○ Forward
 ○ Reverse

• Resampling
 ○ Point sampling
 ○ Triangle filter
 ○ Gaussian filter
Mapping

- Define transformation
 - Describe the destination \((x, y) = \Phi(u, v)\) for every location \((u, v)\) in the source
Example Mappings

• Scale by σ:
 $\Phi(u, v) = (\sigma u, \sigma v)$

Scale $\sigma = 0.8$
Example Mappings

- Rotate by θ degrees:
 - $\Phi(u, v) = (u \cos \theta - v \sin \theta, u \sin \theta + v \cos \theta)$
Example Mappings

- Shear in x by σ_x:
 - $\Phi(u, v) = (u + \sigma_x \cdot v, v)$

- Shear in y by σ_y:
 - $\Phi(u, v) = (u, v + \sigma_y \cdot u)$

Shear x
$\sigma_x = 1.3$

Shear y
$\sigma_y = 1.3$
Other Mappings

• Any function of u and v:
 $\Phi(u, v) = \ldots$

Fish-eye

“Swirl”

“Rain”
Image Warping Implementation I

• Forward mapping:

\[
\text{for(int } v=0 \text{ ; } v<v\text{max } ; \text{ } v++)
\]
\[
\text{for(int } u=0 \text{ ; } u<u\text{max } ; \text{ } u++)
\]
\[
\text{float } (x,y) = \Phi (u,v);
\]
\[
\text{dst}(x,y) = \text{src}(u,v);
\]
Forward Mapping

- Iterate over source image
Forward Mapping – BAD!

- Iterate over source image

Multiple source pixels can map to same destination pixel
Forward Mapping – BAD!

- Iterate over source image

Multiple source pixels can map to same destination pixel

Some destination pixels may not be covered
Image Warping Implementation II

- Reverse mapping:

```c
for( int y=0 ; y<ymax ; y++ )
    for( int x=0 ; x<xmax ; x++ )
        float (u,v) = Φ⁻¹(x,y);
        dst(x,y) = src(u,v);
```

![Diagram showing the reverse mapping process](Image)

Source image ◄ Φ ► Destination image
Reverse Mapping – GOOD!

- Iterate over destination image
 - Must resample source
 - May oversample, but much simpler!
Resampling

- Evaluate source image at arbitrary \((u, v)\)

\((u, v)\) does not usually have integer coordinates
Overview

- Mapping
 - Forward
 - Reverse

- Resampling
 - Nearest Point Sampling
 - Bilinear Sampling
 - Gaussian Sampling
Nearest Point Sampling

- Take value at closest pixel:

 \[
 \text{int } iu = \text{trunc}(u+0.5); \\
 \text{int } iv = \text{trunc}(v+0.5); \\
 \text{dst}(x,y) = \text{src}(iu,iv);
 \]
Bilinear Sampling

- Bilinearly interpolate four closest source pixels

\[
\text{dst}(x, y) = \text{Weighted average of source at} \\
(u_1, v_1), (u_2, v_1), (u_1, v_2), \text{ and } (u_2, v_2)
\]
Linear Sampling

- Linearly interpolate two closest source pixels

\[\text{dst}(x) = \text{linear interpolation of } u_1 \text{ and } u_2 \]

\[
\begin{align*}
u_1 &= \text{floor}(u) \\
u_2 &= u_1 + 1 \\
du &= u - u_1 \\
\text{dst}(x) &= \text{src}(u_1)(1-du) + \text{src}(u_2)du;
\end{align*}
\]
Bilinear Sampling

- Bilinearly interpolate four closest source pixels

\[a = \text{linear interpolation of } \text{src}(u_1, v_1) \text{ and } \text{src}(u_2, v_1) \]
\[b = \text{linear interpolation of } \text{src}(u_1, v_2) \text{ and } \text{src}(u_2, v_2) \]
\[\text{dst}(x, y) = \text{linear interpolation of } a \text{ and } b \]

\[u_1 = \text{floor}(u), \ u_2 = u_1 + 1; \]
\[v_1 = \text{floor}(v), \ v_2 = v_1 + 1; \]

\[du = u - u_1; \]
\[dv = v - v_1; \]

\[a = \text{src}(u_1, v_1) \times (1-\text{du}) + \text{src}(u_2, v_1) \times \text{du}; \]
\[b = \text{src}(u_1, v_2) \times (1-\text{du}) + \text{src}(u_2, v_2) \times \text{du}; \]

\[\text{dst}(x, y) = a \times (1-\text{dv}) + b \times \text{dv}; \]
Bilinear Sampling

- Bilinearly interpolate four closest source pixels
 \[a = \text{linear interpolation of } \text{src}(u_1, v_1) \text{ and } \text{src}(u_2, v_1) \]
 \[b = \text{linear interpolation of } \text{src}(u_1, v_2) \text{ and } \text{src}(u_2, v_2) \]
 \[\text{dst}(x, y) = \text{linear interpolation of } a \text{ and } b \]

\[
\begin{align*}
\text{ul} &= \text{floor}(u), \ u_2 = \text{ul} + 1; \\
\text{vl} &= \text{floor}(v), \ v_2 = \text{vl} + 1; \\
\text{du} &= u - u_1; \\
\text{dv} &= v - v_1;
\end{align*}
\]

\[
\begin{align*}
a &= \text{src}(u_1, v_1)(1 - \text{du}) + \text{src}(u_2, v_1)\text{du}; \\
b &= \text{src}(u_1, v_2)(1 - \text{du}) + \text{src}(u_2, v_2)\text{du}; \\
\text{dst}(x, y) &= a(1 - \text{dv}) + b\text{dv};
\end{align*}
\]

Make sure to test that the pixels \((u_1, v_1), (u_2, v_2), (u_1, v_2), \text{ and } (u_2, v_1)\) are within the image.
Gaussian Sampling

- Compute weighted sum of pixel neighborhood:
 - The blending weights are the normalized values of a Gaussian function.
Filtering Methods Comparison

• Trade-offs
 ◦ Jagged edges versus blurring
 ◦ Computation speed

Nearest Bilinear Gaussian
Image Warping Implementation

• Reverse mapping:

\[
\begin{align*}
\text{for}(\text{int } y=0 ; y<\text{ymax} ; y++) \\
\quad \text{for}(\text{int } x=0 ; x<\text{xmax} ; x++) \\
\quad \text{float } (u,v) = \Phi^{-1}(x,y) ; \\
\quad \text{dst}(x,y) = \text{resample}_\text{src}(u,v,w) ;
\end{align*}
\]
Image Warping Implementation

- Reverse mapping:

\[
\text{for}(\text{int } y=0 \ ; \ y < y_{\text{max}} \ ; \ y++) \\
\quad \text{for}(\text{int } x=0 \ ; \ x < x_{\text{max}} \ ; \ x++) \\
\quad \text{float } (u,v) = \Phi^{-1}(x,y); \\
\quad \text{dst}(x,y) = \text{resample_src}(u,v,w);
\]
Example: Scale

Scale(src, dst, s):

float w ≈ ?;
for(int y=0 ; y<ymax ; y++)
 for(int x=0 ; x<xmax ; x++)
 float (u,v) = (x,y) / s;
 dst(x,y) = resample_src(u,v,w);
Example: Scale

Scale(src, dst, s):

float w ≡ ?;
for(int y=0 ; y<ymax ; y++)
 for(int x=0 ; x<xmax ; x++)
 float (u,v) = (x,y) / s;
 dst(x,y) = resample_src(u,v,w);

\[
\begin{align*}
 w &= \frac{1}{\sigma} \\
 \sigma &= 0.5
\end{align*}
\]
Example: Rotate

\[\text{Rotate}(\ src, \ dst, \ \theta) : \]

\[
\begin{align*}
\text{float} \ w & \equiv \ ?; \\
\text{for}(\ \text{int} \ y=0 ; \ y<\text{ymax} ; \ y++) \\
\quad & \text{for}(\ \text{int} \ x=0 ; \ x<\text{xmax} ; \ x++) \\
\quad \quad \text{float} \ (u,v) = (x \cos(-\theta) - y \sin(-\theta), \\
\quad \quad \quad x \sin(-\theta) + y \cos(-\theta)) ; \\
\quad & \text{dst}(x,y) = \text{resample_src}(u,v,w) ; \\
\end{align*}
\]

\[
\begin{align*}
x & = u \cos \theta - v \sin \theta \\
y & = u \sin \theta + v \cos \theta
\end{align*}
\]

\[\theta = 30 \]
Example: Rotate

Rotate(src, dst, \(\theta \)):

```plaintext
float w \equiv \color{red}?;  
for ( int y=0 ; y<ymax ; y++ )  
    for ( int x=0 ; x<xmax ; x++ )  
        float (u,v) = ( x*cos(-\( \theta \)) - y*sin(-\( \theta \)) , x*sin(-\( \theta \)) + y*cos(-\( \theta \)) );  
        dst(x,y) = resample_src(u,v,w);  
```

\[x = u \cos \theta - v \sin \theta \]
\[y = u \sin \theta + v \cos \theta \]
Example: Fun

`Swirl(src, dst, \theta)`:

```plaintext
float w \equiv ?;
for( int y=0 ; y<y_{\text{max}} ; y++ )
  for( int x=0 ; x<x_{\text{max}} ; x++ )
    float (u,v) =
      \text{rot}( (x_c,y_c),(x,y),
        \text{dist}((x,y)-(x_c,y_c))*\theta) ;
    dst(x,y) = \text{resample\_src}(u,v,w);
```

(u,v) (x,y)
Outline

• Image Processing
• Image Warping
• Image Sampling
Sampling Questions

• How should we sample an image:
 ◦ Nearest Point Sampling?
 ◦ Bilinear Sampling?
 ◦ Gaussian Sampling?
 ◦ Something Else?
What is an image?

An image is a discrete collection of pixels, each representing a sample of a continuous function.
Sampling

Let’s look at a 1D example:

Continuous Function

Discrete Samples
Sampling

At in-between positions, values are undefined.

How do we determine the value of a sample?

We need to reconstruct a continuous function, turning a collection of discrete samples into a 1D function that we can sample at arbitrary locations.
Nearest Point Sampling

The value at a point is the value of the closest discrete sample.

![Diagram showing Nearest Point Sampling with reconstructed function and discrete samples.]
Nearest Point Sampling

The value at a point is the value of the closest discrete sample.

The reconstruction:
✓ Interpolates the samples
✗ Is not continuous
Bilinear Sampling

The value at a point is the (bi)linear interpolation of the two surrounding samples.
Bilinear Sampling

The value at a point is the (bi)linear interpolation of the two surrounding samples.

The reconstruction:

✓ Interpolates the samples

✗ Is not smooth
Gaussian Sampling

The value at a point is the Gaussian average of the surrounding samples.
Gaussian Sampling

The value at a point is the Gaussian average of the surrounding samples.

The reconstruction:
- Does not interpolate
- Is smooth
Image Sampling

Typically this is done in two steps:

1. Reconstruct a continuous function from input samples.
2. Sample a continuous function at a fixed resolution.

Challenge:

Reconstruction is an under-constrained problem.

⇒ To make headway, we need to define what makes a reconstruction good.
Image Sampling

Typically this is done in two steps:

1. Reconstruct a continuous function from input samples.
2. Sample a continuous function at a fixed resolution.

Challenge:

Key Idea:
Of all possible reconstructions, we want the one that is smoothest (has lowest frequencies).

Signal processing helps us formulate this precisely.
Fourier Analysis

- Fourier analysis provides a way for expressing (or approximating) any signal as a sum of scaled and shifted cosine functions.

The Building Blocks for the Fourier Decomposition
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

Initial Function | 0th Order Approximation

\[f_0(\theta) = a_0 \cdot \cos(0 \cdot (\theta + \phi_0)) \]

0th Order Component
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

\[
f_1(\theta) = a_1 \cdot \cos(1 \cdot (\theta + \phi_1))
\]

Initial Function

\[f(\theta)\]
Fourier Analysis

• As higher frequency components are added to the approximation, finer details are captured.

\[f_2(\theta) = a_2 \cdot \cos(2 \cdot (\theta + \phi_2)) \]

2nd Order Component
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

\[
f_3(\theta) = a_3 \cdot \cos(3 \cdot (\theta + \phi_3))
\]

3rd Order Component
Fourier Analysis

• As higher frequency components are added to the approximation, finer details are captured.

Initial Function

$\mathbf{f}\mathbf{(}\mathbf{\theta})$

4th Order Approximation

$\mathbf{f}_4(\theta) = a_4 \cdot \cos(4 \cdot (\theta + \phi_4))$

3rd Order Approximation

4th Order Component
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

\[f_5(\theta) = a_5 \cdot \cos(5 \cdot (\theta + \phi_5)) \]

5th Order Component
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

\[f_6(\theta) = a_6 \cdot \cos(6 \cdot (\theta + \phi_6)) \]

6th Order Component
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

\[f_7(\theta) = a_7 \cdot \cos(7 \cdot (\theta + \phi_8)) \]

7th Order Component
Fourier Analysis

• As higher frequency components are added to the approximation, finer details are captured.

\[
f_8(\theta) = a_8 \cdot \cos(8 \cdot (\theta + \phi_8))
\]

8th Order Component
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

Initial Function

9th Order Approximation

8th Order Approximation

\[f_{9}(\theta) = a_{9} \cdot \cos(9 \cdot (\theta + \phi_{9})) \]

9th Order Component
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

\[
f_{10}(\theta) = a_{10} \cdot \cos(10 \cdot (\theta + \phi_{10}))
\]

10th Order Component
Fourier Analysis

• As higher frequency components are added to the approximation, finer details are captured.

\[
\begin{align*}
\text{Initial Function} & \quad \Rightarrow \quad \text{11}^{\text{th}} \text{ Order Approximation} \\
\begin{array}{c}
f(\theta) \\
\end{array} & \quad \Rightarrow \quad \begin{array}{c}
f_{11}(\theta) = a_{11} \cdot \cos(11 \cdot (\theta + \phi_{11})) \\
\text{11}^{\text{th}} \text{ Order Component}
\end{array}
\end{align*}
\]
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

\[f_{12}(\theta) = a_{12} \cdot \cos(12 \cdot (\theta + \phi_{12})) \]

Initial Function

11th Order Approximation

\[f_{12}(\theta) = a_{12} \cdot \cos(12 \cdot (\theta + \phi_{12})) \]

12th Order Component

12th Order Approximation
Fourier Analysis

• As higher frequency components are added to the approximation, finer details are captured.

\[f_{13}(\theta) = a_{13} \cdot \cos(13 \cdot (\theta + \phi_{13})) \]

13th Order Component
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

\[
\begin{align*}
\text{Initial Function} & : f(\theta) \\
\text{13th Order Approximation} & : f_{13}(\theta) \\
\text{14th Order Component} & : f_{14}(\theta) = a_{14} \cdot \cos(14 \cdot (\theta + \phi_{14})) \\
\text{14th Order Approximation} & : f_{14}(\theta)
\end{align*}
\]
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

\[f_{15}(\theta) = a_{15} \cdot \cos(15 \cdot (\theta + \phi_{15})) \]

15th Order Component
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

Initial Function

$\mathbf{f}(\theta)$

\mathbf{f}

$\mathbf{16}^{th}$ Order Approximation

$\mathbf{f}_{16}(\theta) = a_{16} \cdot \cos(16 \cdot (\theta + \phi_{16}))$

$\mathbf{15}^{th}$ Order Approximation

$\mathbf{16}^{th}$ Order Component
Fourier Analysis

- Combining all of the frequency components together, we get the initial function:

\[f(\theta) = \sum_{k=0}^{\infty} f_k(\theta) = \sum_{k=0}^{\infty} a_k \cdot \cos(k(\theta + \phi_k)) \]

- \(a_k \): amplitude of the \(k \)th frequency component
- \(\phi_k \): shift of the \(k \)th frequency component
Question

- As higher frequency components are added to the approximation, finer details are captured.
- If we have n samples, what is the highest frequency that can be represented?
Question

• As higher frequency components are added to the approximation, finer details are captured.

• If we have n samples, what is the highest frequency that can be represented?

Each frequency component has two degrees of freedom:

• Amplitude
• Shift

With n samples we can represent the first $n/2$ frequency components
Sampling Theorem

Shannon’s Theorem:

A signal can be reconstructed from its samples, if the original signal has no frequencies above $1/2$ the sampling frequency.

Definition:

- A signal is *band-limited* if its highest non-zero frequency is bounded.
- The frequency is called the *bandwidth*.
- The minimum sampling rate for band-limited function is called the *Nyquist rate*.
Image Sampling

1. To reconstruct the continuous function from m samples, we can find the unique function of frequency $m/2$ that interpolates the values.

2. Why don’t we just evaluate this function at the n sample positions?

If $n < m$ we sample below the Nyquist frequency!
Aliasing

- When a high-frequency signal is sampled with insufficiently many samples, it can be perceived as a lower-frequency signal. This masking of higher frequencies as lower ones is referred to as **aliasing**.
Aliasing

• When a high-frequency signal is sampled with insufficiently many samples, it can be perceived as a lower-frequency signal. This masking of higher frequencies as lower ones is referred to as **aliasing**.
Aliasing

- When a high-frequency signal is sampled with insufficiently many samples, it can be perceived as a lower-frequency signal. This masking of higher frequencies as lower ones is referred to as **aliasing**.
Aliasing

- When a high-frequency signal is sampled with insufficiently many samples, it can be perceived as a lower-frequency signal. This masking of higher frequencies as lower ones is referred to as **aliasing**.
Temporal Aliasing

- Artifacts due to limited temporal resolution

10 fps
Temporal Aliasing

- Artifacts due to limited temporal resolution
Temporal Aliasing

- Artifacts due to limited temporal resolution
Temporal Aliasing

• Artifacts due to limited temporal resolution
Temporal Aliasing

- Artifacts due to limited temporal resolution
Temporal Aliasing

• Artifacts due to limited temporal resolution
Sampling

- There are two problems:
 - You don’t have enough samples to correctly reconstruct your high-frequency information.
 - You corrupt the low-frequency information because the high-frequencies mask themselves as lower ones.