Intersection and Acceleration

Michael Kazhdan

(600.357 / 600.457)

HB Ch. 14.1, 14.2
FvDFH 16.1, 16.2
Ray Casting

• Simple implementation:

Image RayCast(Camera camera, Scene scene, int width, int height)
{
 Image image = new Image(width, height);
 for (int i = 0; i < width; i++) {
 for (int j = 0; j < height; j++) {
 Ray ray = ConstructRayThroughPixel(camera, i, j);
 Intersection hit = FindIntersection(ray, scene);
 image[i][j] = GetColor(hit);
 }
 }
 return image;
}
Ray Casting

• Simple implementation:

```java
Image RayCast(Camera camera, Scene scene, int width, int height) {
    Image image = new Image(width, height);
    for (int i = 0; i < width; i++) {
        for (int j = 0; j < height; j++) {
            Ray ray = ConstructRayThroughPixel(camera, i, j);
            Intersection hit = FindIntersection(ray, scene);
            image[i][j] = GetColor(hit);
        }
    }
    return image;
}
```
Ray-Scene Intersection

• Intersections with geometric primitives
 ▪ Sphere
 ▪ Triangle
Ray-Sphere Intersection

Ray: $p(t) = p_0 + t \cdot \vec{v}, \quad (0 \leq t < \infty)$
Sphere: $\Phi(p) = \|p - c\|^2 - r^2 = 0$

Substituting for $p(t)$, we get:
$\Phi(t) = \|p_0 - t \cdot \vec{v} - c\|^2 - r^2 = 0$

Solve quadratic equation:
$a \cdot t^2 + b \cdot t + c = 0$
where:
$a = 1$
$b = 2\langle \vec{v}, p_0 - c \rangle$
$c = \|p_0 - c\|^2 - r^2$
Ray-Sphere Intersection

Ray: \(p(t) = p_0 + t \cdot \vec{v}, \ (0 \leq t < \infty) \)
Sphere: \(\Phi(p) = \| p - c \|^2 - r^2 = 0 \)

Substituting for \(p(t) \), we get:
\[
\Phi(t) = \| p_0 - t \cdot \vec{v} - c \|^2 - r^2 = 0
\]

Solving the quadratic equation:
\[
a \cdot t^2 + b \cdot t + c = 0
\]

where:
\[
a = 1, \quad b = 2 \cdot \vec{v}, \quad c = p_0 - c^2 - r^2
\]

Generally, there are two solutions to the quadratic equation, giving rise to points \(p \) and \(p' \).
You want to return the first (positive) hit.

Unless \(\vec{v} \) is a unit-vector, \(t \) is **not** the distance the ray travels before intersecting.
Ray-Sphere Intersection

• Need normal vector at intersection for lighting calculations:

\[\mathbf{n} = \frac{\mathbf{p} - \mathbf{c}}{\|\mathbf{p} - \mathbf{c}\|} \]
Ray-Scene Intersection

- Intersections with geometric primitives
 - Sphere
 - Triangle
Ray-Triangle Intersection

- First, intersect ray with plane
- Then, check if point is inside triangle
Ray-Plane Intersection

Ray: \(p(t) = p_0 + t \cdot \vec{v}, \quad (0 \leq t < \infty) \)

Plane: \(\Phi(p) = \langle p, \vec{n} \rangle - d = 0 \)

Substituting for \(P \), we get:
\[
\Phi(t) = \langle p_0 + t \cdot \vec{v}, \vec{n} \rangle - d = 0
\]

Solution:
\[
t = -\frac{\langle p_0, \vec{n} \rangle - d}{\langle \vec{v}, \vec{n} \rangle}
\]
Ray-Triangle Intersection I

- Check if point is inside triangle algebraically

Assuming the vertices are oriented CCW relative to the viewer:

For each side of triangle

\[\vec{v}_1 = T_1 - p_0 \]
\[\vec{v}_2 = T_2 - p_0 \]
\[\vec{n}_1 = \vec{v}_2 \times \vec{v}_1 \]

if (\(\langle p - p_0, \vec{n}_1 \rangle < 0 \))
return FALSE;
Ray-Triangle Intersection II

- Check if point is inside triangle parametrically

A point \(p \) is inside the triangle iff. it can be expressed as the weighted average of the corners:

\[
p = \alpha \cdot T_1 + \beta \cdot T_2 + \gamma \cdot T_3
\]

where:

\[
0 \leq \alpha, \beta, \gamma \leq 1
\]

\[
\alpha + \beta + \gamma = 1
\]
Ray-Triangle Intersection II

• Check if point is inside triangle parametrically

Solve for α, β, γ such that:

$$p = \alpha \cdot T_1 + \beta \cdot T_2 + \gamma \cdot T_3$$

(p in the plane $\implies \alpha + \beta + \gamma = 1$)

Check if p is in the triangle:

$$0 \leq \alpha, \beta, \gamma \leq 1$$
Other Ray-Primitive Intersections

- Cone, cylinder, ellipsoid:
 - Similar to sphere

- Box
 - Intersect 3 front-facing planes, return closest

- Convex polygon
 - Same as triangle (check point-in-polygon algebraically)

- Concave polygon
 - Same plane intersection
 - More complex point-in-polygon test
Ray-Scene Intersection

• Intersections with geometric primitives
 ◦ Sphere
 ◦ Triangle

• Acceleration techniques
 ◦ Bounding volume hierarchies
 ◦ Spatial partitions
 » Uniform grids
 » Octrees
 » BSP trees
Ray-Scene Intersection

A direct (naïve) approach generates the image:

```
Intersection FindIntersection( Ray ray, Scene scene )
{
    (min_t, min_shape) = (-1, NULL)
    For each primitive in scene
    {
        t = Intersect(ray, primitive);
        if (t>0 and (t < min_t or min_t<0 ))
            min_shape = primitive
            min_t = t
    }
    return Intersection(min_t, min_shape)
}
```
Overview

• Acceleration techniques
 ◦ Bounding volume hierarchies
 ◦ Spatial partitions
 » Uniform (Voxel) grids
 » Octrees
 » BSP Trees
Intersection Testing

Accelerated techniques try to leverage:

- **Grouping**: To efficiently discard groups of primitives that are guaranteed to be missed by the ray.
- **Ordering**: To test nearer intersections first and allow for early termination if there is a hit.
Bounding Volumes

• Check for intersection with the bounding volume:
 ◦ Bounding cubes
 ◦ Bounding boxes
 ◦ Bounding spheres
 ◦ Etc.

Stuff that’s easy to intersect
Bounding Volumes

• Check for intersection with the bounding volume
 ◦ If ray doesn’t intersect bounding volume, then it doesn’t intersect its contents

Still need to check for intersections with shape.
Bounding Volume Hierarchies

- Build hierarchy of bounding volumes
 - Bounding volume of interior node contains all children
Bounding Volume Hierarchies

• Grouping acceleration

```c
FindIntersection( Ray ray, Node node )
{
    (min_t, min_shape) = ( -1 , NULL )

    if( !intersect ( node.boundingVolume ) )    // Test Bounding box
        return ( -1 , NULL );

    foreach shape    // Test node’s shape
    {
        t = Intersect( shape )
        if( t>0 && (t<min_t || min_t<0) ) (min_t,min_shape) = (t,shape)
    }

    for each child    // Test node’s children
    {
        (t, shape) = FindIntersection(ray, child)
        if (t>0 && (t < min_t || min_t<0)) (min_t, min_shape) = ( t, shape )
    }
    return (min_t, min_shape);
}
```
Bounding Volume Hierarchies

- Use hierarchy to accelerate ray intersections
 - Intersect node contents only if you hit the bounding volume
Bounding Volume Hierarchies

• Use hierarchy to accelerate ray intersections
 ◦ Intersect node contents only if you hit the bounding volume

• Don’t need to test shapes A or B
• Need to test groups 1, 2, and 3
• Need to test shapes C, D, E, and F
Bounding Volume Hierarchies

• Grouping + Ordering acceleration

```c
FindIntersection(Ray ray, Node node)
{
    // Find intersections with the shapes of the node
    ...
    // Find intersections with child node bounding volumes
    ...
    // Sort child bounding volume intersections front to back
    ...

    // Process intersections (checking for early termination)
    for each intersected child
    {
        if (min_t < bv_t[child]) break;
        (t, shape) = FindIntersection(ray, child);
        if (t>0 && (t < min_t || min_t<0)) (min_t, min_shape) = (t, shape)
    }
    return (min_t, min_shape);
}
```
Bounding Volume Hierarchies

• Use hierarchy to accelerate ray intersections
 ◦ Intersect nodes only if you haven’t hit anything closer
Bounding Volume Hierarchies

- Use hierarchy to accelerate ray intersections
 - Intersect nodes only if you haven’t hit anything closer

- Don’t need to test shapes A, B, D, E, or F
- Need to test groups 1, 2, and 3
- Need to test shape C
Ray-Scene Intersection

- Intersections with geometric primitives
 - Sphere
 - Triangle

 - Acceleration techniques
 - Bounding volume hierarchies
 - Spatial partitions
 - Uniform (Voxel) grids
 - Octrees
 - BSP trees
Uniform (Voxel) Grid

• Construct uniform grid over scene
 ◦ Index primitives according to overlaps with grid cells

• A primitive may belong to multiple cells
• A cell may have multiple primitives
Uniform (Voxel) Grid

- Trace rays through grid cells
 - Fast
 - Incremental

Only check primitives in intersected grid cells
Uniform (Voxel) Grid

• Potential problem:
 ◦ How choose suitable grid resolution?

Too little benefit if grid is too coarse

Too much cost if grid is too fine
Ray-Scene Intersection

- Intersections with geometric primitives
 - Sphere
 - Triangle

» Acceleration techniques
 - Bounding volume hierarchies
 - Spatial partitions
 » Uniform (Voxel) grids
 » Octrees
 » BSP trees
Octrees

- We can think of a voxel grid as a tree.
 - The root node is the entire region
 - Each node has eight children obtained by subdividing the parent into eight equal regions
Octrees

- We can think of a voxel grid as a tree.
 - The root node is the entire region
 - Each node has eight children obtained by subdividing the parent into eight equal regions
Octrees

- We can think of a voxel grid as a tree.
 - The root node is the entire region
 - Each node has eight children obtained by subdividing the parent into eight equal regions
Octrees

- We can think of a voxel grid as a tree.
 - The root node is the entire region
 - Each node has eight children obtained by subdividing the parent into eight equal regions
Octrees

- In an octree, we only subdivide regions that contain more than one shape.
Octrees

• In an octree, we only subdivide regions that contain more than one shape.
Octrees

• In an octree, we only subdivide regions that contain more than one shape.
Octrees

- In an octree, we only subdivide regions that contain more than one shape.
Octrees

- In an octree, we only subdivide regions that contain more than one shape.
Octrees

• In an octree, we only subdivide regions that contain more than one shape.

• Adaptively determines grid resolution.
Overview

• Acceleration techniques
 ◦ Bounding volume hierarchies
 ◦ Spatial partitions
 » Uniform (Voxel) grids
 » Octrees
 » BSP trees
 – k-D trees

• Illumination
k-D Trees

• Alternate between splitting along the x-axis, y-axis, and z-axis.
k-D Trees

- Alternate between splitting along the x-axis, y-axis, and z-axis.
k-D Trees

- Alternate between splitting along the x-axis, y-axis, and z-axis.
k-D Trees

- Alternate between splitting along the x-axis, y-axis, and z-axis.
k-D Trees

- Alternate between splitting along the x-axis, y-axis, and z-axis.
k-D Trees

- Alternate between splitting along the \(x\)-axis, \(y\)-axis, and \(z\)-axis.
k-D Trees

- Alternate between splitting along the x-axis, y-axis, and z-axis.

Note:
- Either primitives need to be split, or they belong to multiple nodes.

Limitations:
- The splitting planes still have to be axis-aligned.
Binary Space Partition (BSP) Tree

- Recursively partition space by planes
Binary Space Partition (BSP) Tree

- Recursively partition space by planes
 - Generate a tree structure where the leaves store the shapes.
Binary Space Partition (BSP) Tree

- Recursively partition space by planes
 - Generate a tree structure where the leaves store the shapes.
Binary Space Partition (BSP) Tree

• Recursively partition space by planes
 ◦ Generate a tree structure where the leaves store the shapes.

```
A
  B
    C
  D
    E
  F
```

```
2
  1
    3
```

```
1 2 3
```
Binary Space Partition (BSP) Tree

- Recursively partition space by planes
 - Generate a tree structure where the leaves store the shapes.
Binary Space Partition (BSP) Tree

• Recursively partition space by planes
 ◦ Generate a tree structure where the leaves store the shapes.
Binary Space Partition (BSP) Tree

• Example: Point Intersection
Binary Space Partition (BSP) Tree

- Example: Point Intersection
 - Recursively test what side we are on
Binary Space Partition (BSP) Tree

• Example: Point Intersection
 ◦ Recursively test what side we are on
 » Left of 1 (root) → 2
Binary Space Partition (BSP) Tree

- Example: Point Intersection
 - Recursively test what side we are on
 » Left of 2 → 4
Binary Space Partition (BSP) Tree

- Example: Point Intersection
 - Recursively test what side we are on
 » Right of 4 → Test B
Binary Space Partition (BSP) Tree

• Example: Point Intersection
 ◦ Recursively test what side we are on
 » Missed B. No intersection!
Binary Space Partition (BSP) Tree

- Example: Ray Intersection 1
 - Recursively split the ray and test nearer and farther halves, nearest first. Stop once you hit something:
Binary Space Partition (BSP) Tree

- Example: Ray Intersection 1
 - Recursively split the ray and test nearer and farther halves, nearest first. Stop once you hit something:
 » Test half to the left of 1
Binary Space Partition (BSP) Tree

- Example: Ray Intersection 1
 - Recursively split the ray and test nearer and farther halves, nearest first. Stop once you hit something:
 - Test half to the right of 2
Binary Space Partition (BSP) Tree

• Example: Ray Intersection 1
 ◦ Recursively split the ray and test nearer and farther halves, nearest first. Stop once you hit something:
 » Intersection with C. Done!
Binary Space Partition (BSP) Tree

- Example: Ray Intersection 2
 - Recursively split the ray and test nearer and farther halves, nearest first. Stop once you hit something:
Binary Space Partition (BSP) Tree

- Example: Ray Intersection 2
 - Recursively split the ray and test nearer and farther halves, nearest first. Stop once you hit something:
 - Test half to the left of 1
Binary Space Partition (BSP) Tree

• Example: Ray Intersection 2
 ◦ Recursively split the ray and test nearer and farther halves, nearest first. Stop once you hit something:
 » Test half to the right of 2
Binary Space Partition (BSP) Tree

• Example: Ray Intersection 2
 ◦ Recursively split the ray and test nearer and farther halves, nearest first. Stop once you hit something:
 » Missed C. Recurse!
Binary Space Partition (BSP) Tree

- Example: Ray Intersection 2
 - Recursively split the ray and test nearer and farther halves, nearest first. Stop once you hit something:
 » Test half to left of 2
Binary Space Partition (BSP) Tree

- **Example: Ray Intersection 2**
 - Recursively split the ray and test nearer and farther halves, nearest first. Stop once you hit something:
 - Test half to left of 4

![Binary Space Partition (BSP) Tree Diagram]
Binary Space Partition (BSP) Tree

• Example: Ray Intersection 2
 ◦ Recursively split the ray and test nearer and farther halves, nearest first. Stop once you hit something:
 » Missed A. Recurse!
Binary Space Partition (BSP) Tree

- Example: Ray Intersection 2
 - Recursively split the ray and test nearer and farther halves, nearest first. Stop once you hit something:
 - No half to right of 4.
Binary Space Partition (BSP) Tree

- Example: Ray Intersection 2
 - Recursively split the ray and test nearer and farther halves, nearest first. Stop once you hit something:
 » Test half to right of 1
Binary Space Partition (BSP) Tree

- Example: Ray Intersection 2
 - Recursively split the ray and test nearer and farther halves, nearest first. Stop once you hit something:
 - Test half to left of 3
Binary Space Partition (BSP) Tree

• Example: Ray Intersection 2
 ◦ Recursively split the ray and test nearer and farther halves, nearest first. Stop once you hit something:
 » Intersection with D. Done!
RayTreeIntersect(Ray ray, Node node, double min, double max) {
 if (Node is a leaf) return intersection of closest primitive in cell, or NULL if none
 else
 // Find splitting point
 dist = distance along the ray to split plane of node

 // Find near and far children
 near_child = child of node that contains the origin of Ray
 far_child = other child of node

 // Recurse down near child first
 if(dist>min)
 {
 isect = RayTreeIntersect(ray, near_child, min, max)
 if(isect) return isect /* If there's a hit, we are done */
 }

 // If there's no hit, test the far child
 if(dist<max) return RayTreeIntersect(ray, far_child, min, max)
}