3D Rendering and Ray Casting

Michael Kazhdan

(600.357 / 600.457)

HB Ch. 13.7, 14.6
FvDFH 15.5, 15.10
Rendering

- Generate an image from geometric primitives

Geometric Primitives (3D) → Rendering → Raster Image (2D)
What issues must be addressed by a 3D rendering system?
Overview

- 3D scene representation
- 3D viewer representation
- What do we see?
- How does it look?
Overview

• 3D scene representation
• 3D viewer representation
• What do we see?
• How does it look?

How is the 3D scene described in a computer?
3D Scene Representation

- Scene is usually approximated by 3D primitives
 - Point
 - Line segment
 - Polygon
 - Polyhedron
 - Curved surface
 - Solid object
 - etc.
3D Point

- Specifies a location
3D Point

• Specifies a location
 ◦ Represented by three coordinates
 ◦ Infinitely small

```cpp
class Point3D {
public:
    float x;
    float y;
    float z;
};
```

\((x, y, z)\)
3D Vector

• Specifies a direction and a magnitude
3D Vector

• Specifies a direction and a magnitude
 ○ Represented by three coordinates
 ○ Magnitude $\|\vec{v}\| = \sqrt{dx^2 + dy^2 + dz^2}$
 ○ Has no location

```cpp
class Vector3D {
public:
  float dx;
  float dy;
  float dz;
};
```

$\vec{v} = (dx, dy, dz)$
3D Vector

- Specifies a direction and a magnitude
 - Represented by three coordinates
 - Magnitude \(\|\vec{v}\| = \sqrt{dx^2 + dy^2 + dz^2} \)
 - Has no location

- Dot product of two 3D vectors
 - \(\langle \vec{v}_1, \vec{v}_2 \rangle = dx_1 \cdot dx_2 + dy_1 \cdot dy_2 + dz_1 \cdot dz_2 \)
 - \(\langle \vec{v}_1, \vec{v}_2 \rangle = \|\vec{v}_1\| \cdot \|\vec{v}_2\| \cdot \cos \theta \)
3D Vector

• Specifies a direction and a magnitude
 ◦ Represented by three coordinates
 ◦ Magnitude $||\vec{v}|| = \sqrt{dx^2 + dy^2 + dz^2}$
 ◦ Has no location

• Dot product of two 3D vectors
 ◦ $\langle \vec{v}_1, \vec{v}_2 \rangle = dx_1 \cdot dx_2 + dy_1 \cdot dy_2 + dz_1 \cdot dz_2$
 ◦ $\langle \vec{v}_1, \vec{v}_2 \rangle = ||\vec{v}_1|| \cdot ||\vec{v}_2|| \cdot \cos \theta$

• Cross product of two 3D vectors
 ◦ $\vec{v}_1 \times \vec{v}_2 = \text{Vector normal to plane } \nu_1, \nu_2$
 ◦ $||\vec{v}_1 \times \vec{v}_2|| = ||\vec{v}_1|| \cdot ||\vec{v}_2|| \cdot \sin \theta$
Cross Product: Review

- Let $\mathbf{v}_1 = \mathbf{v}_2 \times \mathbf{v}_3$:
 - $dx_1 = dy_2 \cdot dz_3 - dz_2 \cdot dy_3$
 - $dy_1 = dz_2 \cdot dx_3 - dx_2 \cdot dz_3$
 - $dz_1 = dx_2 \cdot dy_3 - dy_2 \cdot dx_3$

- $\mathbf{v} \times \mathbf{w} = -\mathbf{w} \times \mathbf{v}$ (remember “right-hand” rule)

- We can show:
 - $\mathbf{v} \times \mathbf{w} = \|\mathbf{v}\| \cdot \|\mathbf{w}\| \cdot \sin \theta \cdot \mathbf{n}$, where \mathbf{n} is unit vector normal to \mathbf{v} and \mathbf{w}
 - $\mathbf{v} \times \mathbf{v} = 0$

- http://physics.syr.edu/courses/java-suite/crosspro.html
3D Line Segment

- Linear path between two points
3D Line Segment

- Use a linear combination of two points
 - Parametric representation:
 \[p(t) = p_1 + t \cdot (p_2 - p_1), \quad (0 \leq t \leq 1) \]

```cpp
class Segment3D {
public:
    Point3D p1;
    Point3D p2;
};
```
3D Ray

• Line segment with one endpoint at infinity
 ◦ Parametric representation:
 » $p(t) = p_1 + t \cdot \vec{v}, \quad (0 \leq t < \infty)$

```cpp
class Ray3D
{
  public:
    Point3D p1;
    Vector3D v;
};
```
3D Line

- Line segment with both endpoints at infinity
 - Parametric representation:
 \[p(t) = p_1 + t \cdot \vec{v}, \quad (-\infty < t < \infty) \]

```cpp
class Line3D {
public:
    Point3D p1;
    Vector3D v;
};
```
3D Plane

- A linear combination of three points

\[p_1, p_2, p_3 \]
3D Plane

• A linear combination of three points
 ○ Implicit representation:
 » $\Phi(p) = \langle p - \text{Origin}, \vec{n} \rangle - d = 0$, or
 » $\Phi(p) = ax + by + cz - d = 0$
 $\vec{n} = (a, b, c)$
 ○ \vec{n} is the plane normal
 » (May be) unit-length vector
 » Perpendicular to plane
 ○ d is the signed (weighted) distance of the plane from the origin.

```c++
class Plane3D {
public:
    Vector3D n;
    float d;
};
```
3D Polygon

- Area “inside” a sequence of coplanar points
 - Triangle
 - Quadrilateral
 - Convex
 - Star-shaped
 - Concave
 - Self-intersecting

```cpp
class Polygon3D {
    public:
        Point3D *points;
        int npoints;
};
```

- Points are in counter-clockwise order
- Holes (use > 1 polygon struct)
3D Sphere

- All points at distance r from center point $c = (c_x, c_y, c_z)$
 - Implicit representation:
 $$\Phi(p) = \|p - c\|^2 - r^2 = 0$$
 - Parametric representation:
 $$x(\phi, \theta) = r \cdot \cos \phi \cdot \sin \theta + c_x$$
 $$y(\phi, \theta) = r \cdot \cos \phi \cdot \sin \theta + c_y$$
 $$z(\theta, \phi) = r \cdot \sin \phi + c_z$$

```cpp
class Sphere3D {
public:
    Point3D center;
    float radius;
};
```
Other 3D primitives

• Cone
• Cylinder
• Ellipsoid
• Box
• Etc.
3D Geometric Primitives

• More detail on 3D modeling later in course
 ○ Point
 ○ Line segment
 ○ Polygon
 ○ Polyhedron
 ○ Curved surface
 ○ Solid object
 ○ etc.
Overview

• 3D scene representation
• 3D viewer representation
• What do we see?
• How does it look?

How is the viewing device described in a computer?
Camera Models

- The most common model is pin-hole camera
 - All captured light rays arrive along paths toward focal point without lens distortion (everything is in focus)

Other models consider ...
Depth of field
Motion blur
Lens distortion
Camera Parameters

• What are the parameters of a camera?
Camera Parameters

- **Position**
 - Eye position: `Point3D eye`

- **Orientation**
 - View direction: `Vector3D view`
 - Up direction: `Vector3D up`

- **Aperture**
 - Field of view: `float xFov, yFov`
 - Film plane
 - “Look at” point
 - (View plane normal)
Other Models: Depth of Field

Close Focused

Distance Focused
Other Models: Motion Blur

- Mimics effect of open camera shutter
- Gives perceptual effect of high-speed motion
- Generally involves temporal super-sampling
Traditional Pinhole Camera

- The film sits behind the pinhole of the camera.
Traditional Pinhole Camera

- The film sits behind the pinhole of the camera.
- Rays come in from the outside, pass through the pinhole, and hit the film plane.
Traditional Pinhole Camera

- The film sits behind the pinhole of the camera.
- Rays come in from the outside, pass through the pinhole, and hit the film plane.
Virtual Camera

- The film sits in front of the pinhole of the camera.
Virtual Camera

• The film sits in front of the pinhole of the camera.
• Rays come in from the outside, pass through the film plane, and hit the pinhole.
Virtual Camera

- The film sits in front of the pinhole of the camera.
- Rays come in from the outside, pass through the film plane, and hit the pinhole.

Photograph is right side up
Overview

• 3D scene representation
• 3D viewer representation

• Ray Casting
 ○ What do we see?
 ○ How does it look?
Ray Casting

• Rendering model

• Intersections with geometric primitives
 ◦ Sphere
 ◦ Triangle
Ray Casting

• We invert the process of image generation by sending rays **out** from the pinhole, and then we find the first intersection of the ray with the scene.
Ray Casting

• The color of each pixel on the view plane depends on the radiance emanating from visible surfaces
Ray Casting

• For each sample …
 ◦ Construct ray from eye position through view plane
 ◦ Find first surface intersected by ray through pixel
 ◦ Compute color sample based on surface radiance
Ray Casting

• Simple implementation:

```java
Image RayCast(Camera camera, Scene scene, int width, int height) {
    Image image = new Image(width, height);
    for (int i = 0; i < width; i++) {
        for (int j = 0; j < height; j++) {
            Ray ray = ConstructRayThroughPixel(camera, i, j);
            Intersection hit = FindIntersection(ray, scene);
            image[i][j] = GetColor(hit);
        }
    }
    return image;
}
```

• Where are we looking?
• What are we seeing?
• What does it look like?
Constructing a Ray Through a Pixel

- **Right direction**
- **Back direction**
- **Up direction**

\[\mathbf{v} \]

View Plane

\[\mathbf{p}_0 \]

\[\mathbf{p}[i][j] \]
Constructing a Ray Through a Pixel

The ray has to originate at p_0, the position of the camera. So the equation for the ray is of the form:

$$\text{Ray}(t) = p_0 + t \cdot \vec{v}$$
If the ray passes through the point $p[i][j]$, then the solution for \vec{v} is:

$$\vec{v} = \frac{p[i][j] - p_0}{\|p[i][j] - p_0\|}$$
Constructing a Ray Through a Pixel

If \(p[i][j] \) represents the \((i, j)\)-th pixel of the image, what is its position?
Constructing Ray Through a Pixel

• 2D Example: Side view of camera at p_0
 ◦ What is the position of the i-th pixel, $p[i]$?

$\theta = \text{frustum half-angle (given), or field of view}$
$d = \text{distance to view plane (arbitrary = you pick)}$
Constructing Ray Through a Pixel

- 2D Example: Side view of camera at \(p_0 \)
 - What is the position of the \(i \)-th pixel, \(p[i] \)?

\[
\theta = \text{frustum half-angle (given), or field of view} \\
\text{\(d \) = distance to view plane (arbitrary = you pick)}
\]

\[
\begin{align*}
 p_1 &= p_0 + d \cdot \text{towards} - d \cdot \tan \theta \cdot \text{up} \\
 p_2 &= p_0 + d \cdot \text{towards} + d \cdot \tan \theta \cdot \text{up}
\end{align*}
\]
Constructing Ray Through a Pixel

• 2D Example: Side view of camera at p_0
 ◦ What is the position of the i-th pixel, $p[i]$?

θ = frustum half-angle (given), or field of view
d = distance to view plane (arbitrary = you pick)

$p_1 = p_0 + d \cdot \text{towards} - d \cdot \tan \theta \cdot \text{up}$
$p_2 = p_0 + d \cdot \text{towards} + d \cdot \tan \theta \cdot \text{up}$

$p[i] = p_1 + \left(\frac{i + 0.5}{\text{height}}\right) \cdot (p_2 - p_1)$

$= p_1 + \left(\frac{i + 0.5}{\text{height}}\right) \cdot 2 \cdot d \cdot \tan \theta \cdot \text{up}$
Constructing Ray Through a Pixel

- **2D Example:**

 The ray passing through the i-th pixel is defined by:
 \[
 \text{Ray}(t) = p_0 + t \cdot \hat{v}
 \]

 - p_0: camera position
 - \hat{v}: direction to the i-th pixel:
 \[
 \hat{v} = \frac{p[i] - p_0}{\|p[i] - p_0\|}
 \]
 - $p[i]$: i-th pixel location:
 \[
 p[i] = p_1 + \left(\frac{i + 0.5}{\text{height}}\right) \cdot 2 \cdot d \cdot \tan \theta \cdot \text{up}
 \]
 - p_1 and p_2 are the endpoints of the view plane:
 \[
 p_1 = p_0 + d \cdot \text{towards} - d \cdot \tan \theta \cdot \text{up}
 \]
 \[
 p_2 = p_0 + d \cdot \text{towards} + d \cdot \tan \theta \cdot \text{up}
 \]
Constructing Ray Through a Pixel

• Figuring out how to do this in 3D is assignment 2
Ray Casting

• Simple implementation:

```java
Image RayCast(Camera camera, Scene scene, int width, int height) {
    Image image = new Image(width, height);
    for (int i = 0; i < width; i++) {
        for (int j = 0; j < height; j++) {
            Ray ray = ConstructRayThroughPixel(camera, i, j);
            Intersection hit = FindIntersection(ray, scene);
            image[i][j] = GetColor(hit);
        }
    }
    return image;
}
```
Ray Casting

- Simple implementation:

```java
Image RayCast(Camera camera, Scene scene, int width, int height) {
    Image image = new Image(width, height);
    for (int i = 0; i < width; i++) {
        for (int j = 0; j < height; j++) {
            Ray ray = ConstructRayThroughPixel(camera, i, j);
            Intersection hit = FindIntersection(ray, scene);
            image[i][j] = GetColor(hit);
        }
    }
    return image;
}
```
Ray-Scene Intersection

- Intersections with geometric primitives
 - Sphere
 - Triangle
Ray-Sphere Intersection

Ray: $p(t) = p_0 + t \cdot \vec{v}, \quad (0 \leq t < \infty)$

Sphere: $\Phi(p) = ||p - c||^2 - r^2 = 0$
Ray-Sphere Intersection

Ray: $p(t) = p_0 + t \cdot \vec{v}$, \hspace{1em} (0 \leq t < \infty)

Sphere: $\Phi(p) = \|p - c\|^2 - r^2 = 0$

Substituting for $p(t)$, we get:

$\Phi(t) = \|p_0 - t \cdot \vec{v} - c\|^2 - r^2 = 0$
Ray-Sphere Intersection

\[
\text{Ray: } p(t) = p_0 + t \cdot \vec{v}, \quad (0 \leq t < \infty)
\]
\[
\text{Sphere: } \Phi(p) = \| p - c \|^2 - r^2 = 0
\]

Substituting for \(p(t) \), we get:
\[
\Phi(t) = \| p_0 - t \cdot \vec{v} - c \|^2 - r^2 = 0
\]

Solve quadratic equation:
\[
a \cdot t^2 + b \cdot t + c = 0
\]
where:
\[
a = 1
\]
\[
b = 2\langle \vec{v}, p_0 - c \rangle
\]
\[
c = \| p_0 - c \|^2 - r^2
\]
Ray-Sphere Intersection

Ray: \(p(t) = p_0 + t \cdot \vec{v}, \ (0 \leq t < \infty) \)
Sphere: \(\Phi(p) = \|p - c\|^2 - r^2 = 0 \)

Substituting for \(p(t) \), we get:
\(\Phi(t) = \|p_0 - t \cdot \vec{v} - c\|^2 - r^2 = 0 \)

Solve quadratic equation:
\(a \cdot t^2 + b \cdot t + c = 0 \)
where:

Generally, there are two solutions to the quadratic equation, giving rise to points \(p \) and \(p' \).
Want to return the first positive hit.
Ray-Sphere Intersection

- Need normal vector at intersection for lighting calculations:

\[
\vec{n} = \frac{p - c}{\|p - c\|}
\]
Ray-Scene Intersection

- Intersections with geometric primitives
 - Sphere
 - Triangle
Ray-Triangle Intersection

- First, intersect ray with plane
- Then, check if point is inside triangle
Ray-Plane Intersection

Ray: \(p(t) = p_0 + t \cdot \vec{v}, \quad (0 \leq t < \infty) \)
Plane: \(\Phi(p) = \langle p, \vec{n} \rangle - d = 0 \)

Substituting for \(P \), we get:
\(\Phi(t) = \langle p_0 + t \cdot \vec{v}, \vec{n} \rangle - d = 0 \)

Solution:
\[
 t = -\frac{\langle p_0, \vec{n} \rangle - d}{\langle \vec{v}, \vec{n} \rangle}
\]
Ray-Triangle Intersection I

- Check if point is inside triangle algebraically:
 - Generate triangles by connecting the ray source to each edge
 - Check if the point of intersection is above each of these triangles

For each side of triangle

\[
\vec{v}_1 = T_1 - p_0 \\
\vec{v}_2 = T_2 - p_0 \\
\vec{n}_1 = \vec{v}_2 \times \vec{v}_1 \\
\text{if } (\langle p - p_0, \vec{n}_1 \rangle < 0) \text{ return FALSE;}
\]
Ray-Triangle Intersection II

- Check if point is inside triangle parametrically

A point p is inside the triangle iff. it can be expressed as the weighted average of the corners:

$$ p = \alpha \cdot T_1 + \beta \cdot T_2 + \gamma \cdot T_3 $$

where:

$$ 0 \leq \alpha, \beta, \gamma \leq 1 $$

$$ \alpha + \beta + \gamma = 1 $$
Ray-Triangle Intersection II

• Check if point is inside triangle parametrically

Solve for α, β, γ such that:

$$p = \alpha \cdot T_1 + \beta \cdot T_2 + \gamma \cdot T_3$$

And

$$\alpha + \beta + \gamma = 1$$

Check if point inside triangle:

$$0 \leq \alpha, \beta, \gamma \leq 1$$