Outline

• Image Processing
 • Image Warping
 • Image Sampling
Image Processing

• What about the case when the modification that we would like to make to a pixel depends on the pixels around it?
 ◦ Blurring
 ◦ Edge Detection
 ◦ Etc.
Multi-Pixel Operations

Stationary/Local Filtering

• In the simplest case, we define a mask of weights telling us how values at adjacent pixels should be combined to generate the new value.
Blurring

• To blur across pixels, define a mask:
 - Whose values are non-negative
 - Whose value is largest at the center pixel
 - Whose entries sum to one.

![Original Image](image1.png) ![Blur Image](image2.png)

Filter = \[
\begin{bmatrix}
\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\
\frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\
\frac{1}{16} & \frac{2}{16} & \frac{1}{16}
\end{bmatrix}
\]
Blurring

Pixel(x,y): red = 36
 green = 36
 blue = 0

Filter =
\[
\begin{bmatrix}
\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\
\frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\
\frac{1}{16} & \frac{2}{16} & \frac{1}{16}
\end{bmatrix}
\]
Blurring

Pixel\((x,y)\): red = 36
green = \(36\)
blue = 0

\[
\begin{pmatrix}
1/16 & 2/16 & 1/16 \\
2/16 & 4/16 & 2/16 \\
1/16 & 2/16 & 1/16 \\
\end{pmatrix}
\]
Blurring

Original

New value for Pixel(x,y).red =

\[
\frac{36 \times 1}{16} + \frac{109 \times 2}{16} + \frac{146 \times 1}{16} \\
\frac{32 \times 2}{16} + \frac{36 \times 4}{16} + \frac{109 \times 2}{16} \\
\frac{32 \times 1}{16} + \frac{36 \times 2}{16} + \frac{73 \times 1}{16}
\]

Pixel(x,y).red and its red neighbors

Filter =

\[
\begin{bmatrix}
\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\
\frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\
\frac{1}{16} & \frac{2}{16} & \frac{1}{16}
\end{bmatrix}
\]
Blurring

New value for Pixel(x,y).red = 62.69

Pixel(x,y).red and its red neighbors

<table>
<thead>
<tr>
<th>Y - 1</th>
<th>X - 1</th>
<th>X</th>
<th>X + 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>36</td>
<td>109</td>
<td>146</td>
</tr>
<tr>
<td>Y</td>
<td>32</td>
<td>36</td>
<td>109</td>
</tr>
<tr>
<td>Y + 1</td>
<td>32</td>
<td>36</td>
<td>73</td>
</tr>
</tbody>
</table>

Filter =

\[
\begin{bmatrix}
\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\
\frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\
\frac{1}{16} & \frac{2}{16} & \frac{1}{16}
\end{bmatrix}
\]
Blurring

Original

Blur

New value for Pixel(x,y).red = 63

\[
\begin{bmatrix}
\frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\
\frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\
\frac{1}{16} & \frac{2}{16} & \frac{1}{16}
\end{bmatrix}
\]
Blurring

• Repeat for each pixel and each color channel

• **Note 1**: Keep source and destination separate to avoid “drift”.

• **Note 2**: For boundary pixels, not all neighbors are used, and you need to normalize the mask so that the sum of the values is correct.
Blurring

- In general, the mask can have arbitrary size:
 - We can express a smaller mask as a bigger one by padding with zeros.

\[
\begin{bmatrix}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 \\
0 & 2 & 4 & 2 & 0 \\
0 & 1 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

Original Blur
Blurring

- In general, the mask can have arbitrary size:
 - We can have more non-zero entries to give rise to a wider blur.

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 \\
0 & 2 & 4 & 2 & 0 \\
0 & 1 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\quad /16
\]

\[
\begin{bmatrix}
0 & 1 & 2 & 1 & 0 \\
1 & 2 & 4 & 2 & 1 \\
2 & 4 & 8 & 4 & 2 \\
1 & 2 & 4 & 2 & 1 \\
0 & 1 & 2 & 1 & 0 \\
\end{bmatrix}
\quad /48
\]

Original

Narrow Blur

Wide Blur
Blurring

- A general way for defining the entries of an $n \times n$ mask is to use the values of a Gaussian:

$$\text{GaussianMask}[i][j] = e^{-\frac{d_i^2 + d_j^2}{2\sigma^2}}$$

- σ equals the mask radius ($n/2$ for an $n \times n$ mask)
- d_i is i’s horizontal distance from the center pixel
- d_j is j’s vertical distance from the center pixel
- **Don’t forget to normalize!**
Edge Detection

• An edge is a point in the image where the image is “far” from constant.
Edge Detection

- To find the edges in an image, define a mask:
 - Whose value is largest at the center pixel
 - Whose entries sum to zero.

- Edge pixels are those whose value is larger (on average) than those of its neighbors.

\[
\text{Filter} = \begin{bmatrix}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1 \\
\end{bmatrix}
\]

Original
Detected Edges
Edge Detection

Pixel(x,y): red = 36
 green = 36
 blue = 0

Filter =

<table>
<thead>
<tr>
<th>-1</th>
<th>-1</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>8</td>
<td>-1</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>
Edge Detection

Pixel\((x,y)\): red = 36
green = 36
blue = 0

<table>
<thead>
<tr>
<th></th>
<th>X - 1</th>
<th>X</th>
<th>X + 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y - 1</td>
<td>36</td>
<td>109</td>
<td>146</td>
</tr>
<tr>
<td>Y</td>
<td>32</td>
<td>36</td>
<td>109</td>
</tr>
<tr>
<td>Y + 1</td>
<td>32</td>
<td>36</td>
<td>73</td>
</tr>
</tbody>
</table>

Pixel\((x,y)\).red and its red neighbors

Filter = \[
\begin{bmatrix}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1 \\
\end{bmatrix}
\]
Edge Detection

Original

Pixel(x,y).red and its red neighbors

New value for Pixel(x,y).red =

(36 * -1) + (109 * -1) + (146 * -1)
(32 * -1) + (36 * 8) + (109 * -1)
(32 * -1) + (36 * -1) + (73 * -1)

Filter =

\[
\begin{bmatrix}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1 \\
\end{bmatrix}
\]
Edge Detection

New value for Pixel(x,y).red = -285

Filter =

\[
\begin{bmatrix}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1 \\
\end{bmatrix}
\]

Pixel(x,y).red and its red neighbors

Original

\[
\begin{array}{ccc}
X - 1 & X & X + 1 \\
Y - 1 & 36 & 109 & 146 \\
Y & 32 & 36 & 109 \\
Y + 1 & 32 & 36 & 73 \\
\end{array}
\]
Edge Detection

Original

New value for Pixel(x,y).red = 0

Pixel(x,y).red and its red neighbors

Filter =

\[
\begin{bmatrix}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1
\end{bmatrix}
\]
Edge Detection

New value for Pixel(x,y).red = 0

\[
\begin{bmatrix}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1 \\
\end{bmatrix}
\]
Edge Detection

Note: Edge values are not colors, so we have to rescale/remap for visualization.

New value for Pixel(x,y).red = 0

\[
\begin{bmatrix}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1 \\
\end{bmatrix}
\]
Outline

• Image Processing
• Image Warping
• Image Sampling
Image Warping

- Move pixels of image
 - Mapping
 - Resampling

Source image Warp Destination image
Overview

• Mapping
 ○ Forward
 ○ Reverse

• Resampling
 ○ Point sampling
 ○ Triangle filter
 ○ Gaussian filter
Mapping

- Define transformation
 - Describe the destination \((x, y) = \Phi(u, v)\) for every location \((u, v)\) in the source
Example Mappings

- Scale by σ:
 - $\Phi(u, v) = (\sigma u, \sigma v)$

Scale $\sigma = 0.8$
Example Mappings

- Rotate by θ degrees:
 \[\Phi(u, v) = (u \cos \theta - v \sin \theta, u \sin \theta + v \cos \theta) \]

Rotate $\theta = 30$
Example Mappings

• Shear in x by σ_x:
 \[\Phi(u, v) = (u + \sigma_x \cdot v, v) \]

• Shear in y by σ_y:
 \[\Phi(u, v) = (u, v + \sigma_y \cdot u) \]
Other Mappings

• Any function of u and v:
 ○ $\Phi(u, v) = \cdots$

Fish-eye

“Swirl”

“Rain”
Image Warping Implementation I

- Forward mapping:

 \[
 \begin{align*}
 &\text{for}(\text{int } v=0 ; v<v_{\text{max}} ; v++) \\
 &\text{for}(\text{int } u=0 ; u<u_{\text{max}} ; u++) \\
 &\quad \text{float } (x,y)=\Phi(u,v) ; \\
 &\quad \text{dst}(x,y) = \text{src}(u,v) ;
 \end{align*}
 \]
Forward Mapping

- Iterate over source image
Forward Mapping – BAD!

- Iterate over source image

Multiple source pixels can map to same destination pixel

Rotate + Translate
Forward Mapping – BAD!

- Iterate over source image

Multiple source pixels can map to same destination pixel

Some destination pixels may not be covered

Rotate + Translate
Image Warping Implementation II

- Reverse mapping:

```cpp
for( int y=0 ; y<ymax ; y++ )
  for( int x=0 ; x<xmax ; x++ )
    float (u,v) = \Phi^{-1}(x,y);
    dst(x,y) = src(u,v);
```

Source image Destination image

\((u,v)\) \((x,y)\)
Reverse Mapping – GOOD!

- Iterate over destination image
 - Must resample source
 - May oversample, but much simpler!
Resampling

- Evaluate source image at arbitrary \((u, v)\)

\((u, v)\) does not usually have integer coordinates
Overview

• Mapping
 ◦ Forward
 ◦ Reverse

• Resampling
 ◦ Nearest Point Sampling
 ◦ Bilinear Sampling
 ◦ Gaussian Sampling
Nearest Point Sampling

- Take value at closest pixel:
 \[
 \text{int } iu = \text{trunc}(u+0.5); \\
 \text{int } iv = \text{trunc}(v+0.5); \\
 \text{dst}(x,y) = \text{src}(iu,iv);
 \]
Bilinear Sampling

- Bilinearly interpolate four closest source pixels

$$\text{dst}(x, y) = \text{Weighted Average of Source at } (u_1, v_1), (u_2, v_1), (u_1, v_2), \text{ and } (u_2, v_2)$$
Linear Sampling

- Linearly interpolate two closest source pixels

\[\text{dst}(x) = \text{linear interpolation of } u_1 \text{ and } u_2 \]

\[u_1 = \text{floor}(u) \];
\[u_2 = u_1 + 1 \];
\[du = u - u_1 \];
\[\text{dst}(x) = \text{src}(u_1) \times (1 - du) + \text{src}(u_2) \times du; \]
Bilinear Sampling

- Bilinearly interpolate four closest source pixels

 \[a = \text{linear interpolation of } src(u_1, v_1) \text{ and } src(u_2, v_1) \]

 \[b = \text{linear interpolation of } src(u_1, v_2) \text{ and } src(u_2, v_2) \]

 \[\text{dst}(x, y) = \text{linear interpolation of } a \text{ and } b \]

\[
\begin{align*}
 u_1 &= \text{floor}(u), \quad u_2 = u_1 + 1; \\
 v_1 &= \text{floor}(v), \quad v_2 = v_1 + 1; \\
 du &= u - u_1; \\
 a &= src(u_1, v_1)*(1-du) \\
 &\quad + src(u_2, v_1)*du; \\
 b &= src(u_1, v_2)*(1-du) \\
 &\quad + src(u_2, v_2)*du; \\
 dv &= v - v_1; \\
 \text{dst}(x, y) &= a*(1-dv) + b*dv;
\end{align*}
\]
Bilinear Sampling

• Bilinearly interpolate four closest source pixels

\[a = \text{linear interpolation of } \text{src}(u_1, v_1) \text{ and } \text{src}(u_2, v_1) \]
\[b = \text{linear interpolation of } \text{src}(u_1, v_2) \text{ and } \text{src}(u_2, v_2) \]
\[\text{dst}(x, y) = \text{linear interpolation of } a \text{ and } b \]

\[u_1 = \text{floor}(u), \quad u_2 = u_1 + 1; \]
\[v_1 = \text{floor}(v), \quad v_2 = v_1 + 1; \]
\[du = u - u_1; \]
\[a = \text{src}(u_1, v_1) \cdot (1 - du) \]
\[+ \text{src}(u_2, v_1) \cdot du; \]
\[b = \text{src}(u_1, v_2) \cdot (1 - du) \]
\[+ \text{src}(u_2, v_2) \cdot du; \]
\[dv = v - v_1; \]
\[\text{dst}(x, y) = a \cdot (1 - dv) + b \cdot dv; \]

Make sure to test that the pixels \((u_1, v_1), (u_2, v_2), (u_1, v_2), \text{ and } (u_2, v_1)\) are within the image.
Gaussian Sampling

• Compute weighted sum of pixel neighborhood:
 ○ The blending weights are the normalized values of a Gaussian function.
Filtering Methods Comparison

- Trade-offs
 - Jagged edges versus blurring
 - Computation speed

Nearest Bilinear Gaussian
Image Warping Implementation

• Reverse mapping:

\[
\text{for (int } y=0 \ ; \ y<\text{ymax} \ ; \ y++) \\
\text{for (int } x=0 \ ; \ x<\text{xmax} \ ; \ x++) \\
\text{float } (u,v) = \Phi^{-1}(x,y); \\
\text{dst}(x,y) = \text{resample}_\text{src}(u,v,w);
\]
Image Warping Implementation

• Reverse mapping:

```c
for( int y=0 ; y<ymax ; y++ )
    for( int x=0 ; x<xmax ; x++ )
        float (u,v) = Φ⁻¹(x,y);
        dst(x,y) = resample_src(u,v,w);
```

Source image Destination image

((u,v) (x,y))
Example: Scale

Scale(src, dst, s):

float w ≈ ?;
for(int y=0 ; y<ymax ; y++)
 for(int x=0 ; x<xmax ; x++)
 float (u,v) = (x,y) / s;
 dst(x,y) = resample_src(u,v,w);

Scale 𝜎 = 0.5 (x,y) → (u,v)
Example: Scale

Scale(src, dst, s):

float w ≡ ?;
for(int y=0 ; y<ymax ; y++)
 for(int x=0 ; x<xmax ; x++)
 float (u,v) = (x,y) / s;
 dst(x,y) = resample_src(u,v,w);

\[w = \frac{1}{\sigma} \]
Example: Rotate

Rotate(src, dst, θ):

float w \equiv ?;
for (int y=0 ; y<ymax ; y++)
 for (int x=0 ; x<xmax ; x++)
 float (u,v) = (x*cos(-θ) - y*sin(-θ) ,
 x*sin(-θ) + y*cos(-θ));
 dst(x,y) = resample_src(u,v,w);

\[x = u \cos \theta - v \sin \theta \]
\[y = u \sin \theta + v \cos \theta \]
Example: Rotate

Rotate(src, dst, θ):

float w ≡ ?;
for(int y=0 ; y<ymax ; y++)
 for(int x=0 ; x<xmax ; x++)
 float (u,v) = (x*cos(-θ) - y*sin(-θ) ,
 x*sin(-θ) + y*cos(-θ));
 dst(x,y) = resample_src(u,v,w);

\[
\begin{align*}
 w &= 1 \\
 x &= u \cos \theta - v \sin \theta \\
 y &= u \sin \theta + v \cos \theta
\end{align*}
\]
Example: Fun

Swirl(src, dst,θ):

float w ?;
for(int y=0 ; y<y\text{max} ; y++)
 for(int x=0 ; x<x\text{max} ; x++)
 float (u,v) =
 rot((xc,yc),(x,y),
 \text{dist}((x,y)-(xc,yc))*\theta);
 dst(x,y) = \text{resample}_src(u,v,w);

(u,v)

(x,y)

Swirl

v

y

u

x
Outline

• Image Processing
• Image Warping
• Image Sampling
Sampling Questions

• How should we sample an image:
 ◦ Nearest Point Sampling?
 ◦ Bilinear Sampling?
 ◦ Gaussian Sampling?
 ◦ Something Else?
What is an image?

An image is a discrete collection of pixels, each representing a sample of a continuous function.
Sampling

Let’s look at a 1D example:

Continuous Function

Discrete Samples
Sampling

At in-between positions, values are undefined.

How do we determine the value of a sample?

We need to **reconstruct** a continuous function, turning a collection of discrete samples into a 1D function that we can sample at arbitrary locations.
Nearest Point Sampling

The value at a point is the value of the closest discrete sample.
Nearest Point Sampling

The value at a point is the value of the closest discrete sample.

The reconstruction:

✔ Interpolates the samples
✗ Is not continuous

Reconstructed Function

Discrete Samples
Bilinear Sampling

The value at a point is the (bi)linear interpolation of the two surrounding samples.
Bilinear Sampling

The value at a point is the (bi)linear interpolation of the two surrounding samples.

The reconstruction:

- Interpolates the samples
- Is not smooth
Gaussian Sampling

The value at a point is the Gaussian average of the surrounding samples.
Gaussian Sampling

The value at a point is the Gaussian average of the surrounding samples.

The reconstruction:
- Does not interpolate
- Is smooth
Image Sampling

Typically this is done in two steps:
1. Reconstruct a continuous function from input samples.
2. Sample a continuous function at a fixed resolution.

Challenge:

Reconstruction is an under-constrained problem.

⇒ To make headway, we need to define what makes a reconstruction good.
Image Sampling

Typically this is done in two steps:
1. Reconstruct a continuous function from input samples.
2. Sample a continuous function at a fixed resolution.

Challenge:

Key Idea:
Of all possible reconstructions, we want the one that is smoothest (has lowest frequencies).

Signal processing helps us formulate this precisely.
Fourier Analysis

- Fourier analysis provides a way for expressing (or approximating) any signal as a sum of scaled and shifted cosine functions.

The Building Blocks for the Fourier Decomposition
Fourier Analysis

• As higher frequency components are added to the approximation, finer details are captured.

Initial Function

\[f_0(\theta) = a_0 \cdot \cos(0 \cdot (\theta + \phi_0)) \]

0th Order Component
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

\[f_1(\theta) = a_1 \cdot \cos(1 \cdot (\theta + \phi_1)) \]
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

<table>
<thead>
<tr>
<th>Initial Function</th>
<th>2nd Order Approximation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1st Order Approximation

\[f_1(\theta) = a_2 \cdot \cos(2 \cdot (\theta + \phi_2)) \]

2nd Order Component
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

$\mathcal{f}(\theta)$

Initial Function

$\mathcal{f}_3(\theta) = a_3 \cdot \cos(3 \cdot (\theta + \phi_3))$

3^{rd} Order Component

2^{nd} Order Approximation

3^{rd} Order Approximation
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

Initial Function

$\begin{align*}
\text{4th Order Approximation} & \quad f_4(x) = a_4 \cdot \cos(4 \cdot (\theta + \phi_4)) \\
\text{3rd Order Approximation} & \\
\text{4th Order Component} &
\end{align*}$
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

\[f(\theta) = a_5 \cdot \cos(5 \cdot (\theta + \phi_5)) \]
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

Initial Function

$\mathbf{f}(\theta)$

6th Order Approximation

6^{th} Order Component

$f_6(\theta) = a_6 \cdot \cos(6 \cdot (\theta + \phi_6))$

5th Order Approximation

$+$

6th Order Component
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

\[f_7(\theta) = a_7 \cdot \cos(7 \cdot (\theta + \phi_8)) \]

7th Order Component
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

\[f_8(\theta) = a_8 \cdot \cos(8 \cdot (\theta + \phi_8)) \]

8th Order Component
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

\[
f_9(\theta) = a_9 \cdot \cos(9 \cdot (\theta + \phi_9))
\]

9th Order Component

Initial Function

9th Order Approximation

8th Order Approximation

\[f(\theta) \]
Fourier Analysis

• As higher frequency components are added to the approximation, finer details are captured.

\[f_{10}(\theta) = a_{10} \cdot \cos(10 \cdot (\theta + \phi_{10})) \]

10th Order Component
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

Initial Function

θ

11^{th} Order Approximation

$f_{11}(\theta) = a_{11} \cdot \cos(11 \cdot (\theta + \phi_{11}))$

11^{th} Order Component

ϕ_{11}
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

\[f_{12}(\theta) = a_{12} \cdot \cos(12 \cdot (\theta + \phi_{12})) \]

Initial Function

11th Order Approximation

12th Order Approximation

12th Order Component
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

\[f_{13}(\theta) = a_{13} \cdot \cos(13 \cdot (\theta + \phi_{13})) \]

13th Order Component
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

\[f_{14}(\theta) = a_{14} \cdot \cos(14 \cdot (\theta + \phi_{14})) \]

14th Order Component
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

Initial Function	15th Order Approximation
$f(\theta)$ | $f_{15}(\theta) = a_{15} \cdot \cos(15 \cdot (\theta + \phi_{15}))$

14th Order Approximation
Fourier Analysis

- As higher frequency components are added to the approximation, finer details are captured.

\[
f_{16}(\theta) = a_{16} \cdot \cos(16 \cdot (\theta + \phi_{16}))
\]

16th Order Component
Fourier Analysis

• Combining all of the frequency components together, we get the initial function:

\[f(\theta) = \sum_{k=0}^{\infty} f_k(\theta) = \sum_{k=0}^{\infty} a_k \cdot \cos(k(\theta + \phi_k)) \]

- \(a_k \): amplitude of the \(k^{th} \) frequency component
- \(\phi_k \): shift of the \(k^{th} \) frequency component
Question

- As higher frequency components are added to the approximation, finer details are captured.
- If we have n samples, what is the highest frequency that can be represented?
Question

• As higher frequency components are added to the approximation, finer details are captured.

• If we have \(n \) samples, what is the highest frequency that can be represented?

Each frequency component has two degrees of freedom:
 • Amplitude
 • Shift

With \(n \) samples we can represent the first \(n/2 \) frequency components
Sampling Theorem

Shannon’s Theorem:

A signal can be reconstructed from its samples, if the original signal has no frequencies above $1/2$ the sampling frequency.

Definition:

- A signal is *band-limited* if its highest non-zero frequency is bounded.
- The frequency is called the *bandwidth*.
- The minimum sampling rate for band-limited function is called the *Nyquist rate*.
Image Sampling

1. To reconstruct the continuous function from \(m \) samples, we can find the unique function of frequency \(m/2 \) that interpolates the values.

2. Why don’t we just evaluate this function at the \(n \) sample positions?

If \(n < m \) we sample below the Nyquist frequency!
Aliasing

- When a high-frequency signal is sampled with insufficiently many samples, it can be perceived as a lower-frequency signal. This masking of higher frequencies as lower ones is referred to as **aliasing**.
Aliasing

• When a high-frequency signal is sampled with insufficiently many samples, it can be perceived as a lower-frequency signal. This masking of higher frequencies as lower ones is referred to as aliasing.
Aliasing

• When a high-frequency signal is sampled with insufficiently many samples, it can be perceived as a lower-frequency signal. This masking of higher frequencies as lower ones is referred to as **aliasing**.
Aliasing

- When a high-frequency signal is sampled with insufficiently many samples, it can be perceived as a lower-frequency signal. This masking of higher frequencies as lower ones is referred to as **aliasing**.
Temporal Aliasing

- Artifacts due to limited temporal resolution

10 fps
Temporal Aliasing

- Artifacts due to limited temporal resolution

10 fps

30 fps
Temporal Aliasing

- Artifacts due to limited temporal resolution
Temporal Aliasing

- Artifacts due to limited temporal resolution
Temporal Aliasing

• Artifacts due to limited temporal resolution
Temporal Aliasing

• Artifacts due to limited temporal resolution
Sampling

• There are two problems:
 ○ You don’t have enough samples to correctly reconstruct your high-frequency information
 ○ You corrupt the low-frequency information because the high-frequencies mask themselves as lower ones.