Animating Transformations

Michael Kazhdan

(600.357 / 600.457)
Anouncements

• Slides and code for the 2nd OpenGL review session have been posted.
Recall

Keyframe Animation:

• Interpolate variables describing keyframes to determine poses for character “in-between”
Recall

- Inbetweening
 - Interpolate angles, not positions, between keyframes
Overview

• Rotations and SVD

• Interpolating/Approximating Points
 ○ Vectors
 ○ Unit-Vectors

• Interpolating/Approximating Transformations
 ○ Matrices
 ○ Rotations
 » SVD Factorization
 » Euler Angles
Rotations

What are rotations?
Rotations

What are rotations?

• A rotation R is a linear transformation that has determinant one and preserves angles:

$$\langle v, w \rangle = \langle R(v), R(w) \rangle$$

Recall that the dot-product between two vectors can be expressed as a matrix multiplication:

$$\langle v, w \rangle = v^t w$$
Rotations

What are rotations?

• A rotation R is a linear transformation that has determinant one and preserves angles:

$$\langle v, w \rangle = \langle R(v), R(w) \rangle$$

This implies that:

$$v^t w = (Rv)^t (Rw)$$
$$= v^t R^t Rw$$

Since this is true for all v and w, this means that:

$$R^t R = \text{identity} \quad \Leftrightarrow \quad R^t = R^{-1}$$
Rotations

What are rotations?

• A rotation R is a linear transformation that has determinant one and preserves angles:
 \[\langle v, w \rangle = \langle R(v), R(w) \rangle \]

• A rotation R is a linear transformation that has determinant equal to one and whose transpose is its inverse.

• A 3D rotation can be specified by a 3×3 matrix.
Rotations

What are rotations?

• A rotation in 3D can also be specified by:
 ◦ its axis of rotation \(w \) (\(\|w\| = 1 \)) and
 ◦ its angle of rotation \(\theta \)
Rotations

What are rotations?

• A rotation in 3D can also be specified by:
 ◦ its axis of rotation \(w \) \((\|w\| = 1)\) and
 ◦ its angle of rotation \(\theta \)

Properties:

 ◦ The rotation corresponding to \((\theta, w)\) is the same as the rotation corresponding to \((-\theta, -w)\).
 ◦ Given rotations corresponding to \((\theta_1, w)\) and \((\theta_2, w)\), the product of the rotations corresponds to \((\theta_1 + \theta_2, w)\).
 ◦ Given a rotation corresponding \((\theta, w)\), the rotation raised to the power \(\alpha\) corresponds to \((\alpha \theta, w)\).
Rotations

What are rotations?

• A rotation in 3D can also be specified by:
 ◦ its axis of rotation w ($\|w\| = 1$) and
 ◦ its angle of rotation θ

Properties:

◦ The rotation corresponding to (θ, w) is the same as the rotation corresponding to $(-\theta, -w)$.

How do we define the product of rotations corresponding to (θ_1, w_1) and (θ_2, w_2)?

◦ Given a rotation corresponding (θ, w), the rotation raised to the power α corresponds to $(\alpha \theta, w)$.
Any $m \times n$ matrix M can be expressed in terms of its Singular Value Decomposition as:

$$M = UDV^t$$

where:

- U is an $n \times n$ rotation matrix
- V is an $m \times m$ rotation matrix
- D is an $m \times n$ diagonal matrix (i.e. off-diagonals are 0).
SVD

Applications:

• Compression
• Model Alignment
• Matrix Inversion
• Solving Over-Constrained Linear Equations
Matrix Inversion:
If we have an $n \times n$ invertible matrix M, we can use SVD to compute the inverse of M.
Expressing M in terms of its SVD gives:

$$M = UDV^t$$

where:
- U is an $n \times n$ rotation matrix,
- V is an $n \times n$ rotation matrix,
- D is an $n \times n$ diagonal matrix
SVD

Matrix Inversion:

If we have an $n \times n$ invertible matrix M, we can use SVD to compute the inverse of M.

We can express M^{-1} as:

$$M = (UDV^t)^{-1} = (V^t)^{-1}D^{-1}U^{-1}$$

$$= VD^{-1}U^t$$

Since:

- U is a rotation, $U^{-1} = U^t$.
- V is a rotation, $V^{-1} = V^t$.
SVD

Matrix Inversion:

If we have an $n \times n$ invertible matrix M, we can use SVD to compute the inverse of M.

We can express M^{-1} as:

$$M = (UDV^t)^{-1} = (V^t)^{-1}D^{-1}U^{-1} = VD^{-1}U^t$$

Since D is a diagonal matrix:

$$D = \begin{pmatrix}
\lambda_1 & 0 & \cdots & 0 & 0 \\
0 & \lambda_2 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \lambda_{n-1} & 0 \\
0 & 0 & \cdots & 0 & \lambda_n
\end{pmatrix} \quad \Rightarrow \quad D^{-1} = \begin{pmatrix}
1/\lambda_1 & 0 & \cdots & 0 & 0 \\
0 & 1/\lambda_2 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1/\lambda_{n-1} & 0 \\
0 & 0 & \cdots & 0 & 1/\lambda_n
\end{pmatrix}$$
SVD

Matrix Inversion:

If we have an $n \times n$ invertible matrix M, we can use SVD to compute the inverse of M.

We can express M^{-1} as:

\[
M = (UDV^t)^{-1} = (V^t)^{-1}D^{-1}U^{-1} = VD^{-1}U^t
\]

Since D is a diagonal matrix:

Note that this is not necessarily an efficient way to invert a matrix.
Overview

• Rotations and SVD

• Interpolating/Approximating Points
 ◦ Vectors
 ◦ Unit-Vectors

• Interpolating/Approximating Transformations
 ◦ Matrices
 ◦ Rotations
 » SVD Factorization
 » Euler Angles
Vectors

Given a collection of n control points $\{p_0, \ldots, p_{n-1}\}$, define a curve $\Phi(t)$ that approximates/interpolates the points.
Vectors

Given a collection of \(n \) control points \(\{p_0, \ldots, p_{n-1}\} \), define a curve \(\Phi(t) \) that approximates/interpolates the points.

Linear Interpolation:

- Interpolating
- \(C^0 \) continuous

\[
\Phi_k(t) = (1 - t)p_k + t \cdot p_{k+1}
\]
Vectors

Given a collection of \(n \) control points \(\{p_0, \ldots, p_{n-1}\} \), define a curve \(\Phi(t) \) that approximates/interpolates the points.

Catmull-Rom Splines (Cardinal Splines with \(t = 0 \)):

- Interpolating
- \(C^1 \) continuous

\[
\Phi_k(t) = CR_0(t) \cdot p_{k-1} + CR_1(t) \cdot p_k + CR_2(t) \cdot p_{k+1} + CR_3(t) \cdot p_{k+2}
\]
Vectors

Given a collection of \(n \) control points \(\{p_0, \ldots, p_{n-1}\} \), define a curve \(\Phi(t) \) that approximates/interpolates the points.

Uniform Cubic B-Splines:

- Approximating
- \(C^2 \) continuous

\[
\Phi_k(t) = B_{0,3}(t) \cdot p_{k-1} + B_{1,3}(t) \cdot p_k + B_{2,3}(t) \cdot p_{k+1} + B_{3,3}(t) \cdot p_{k+2}
\]
Unit-Vectors

What if we add the additional constraint that the points \(\{p_0, ..., p_{n-1}\} \) and the curve \(\Phi(t) \) have to lie on the unit circle/sphere (\(\|p_i\| = 1, \|\Phi(t)\| = 1 \))?
Unit-Vectors

What if we add the additional constraint that the points \(\{p_0, \ldots, p_{n-1}\} \) and the curve \(\Phi(t) \) have to lie on the unit circle/sphere (\(\|p_i\| = 1, \|\Phi(t)\| = 1 \))?

We can’t interpolate/approximate the points as before, because the in-between points don’t have to lie on the unit circle/sphere!

\[
\Phi(t) = (1 - t)p_0 + tp_1
\]
Unit-Vectors

What if we add the additional constraint that the points \(\{p_0, \ldots, p_{n-1}\} \) and the curve \(\Phi(t) \) have to lie on the unit circle/sphere (\(\|p_i\| = 1, \|\Phi(t)\| = 1 \))?

We can normalize the in-between points by sending them to the closest circle/sphere point:

\[
\tilde{\Phi}(t) = \frac{\Phi(t)}{\|\Phi(t)\|}
\]

\[
\Phi(t) = (1 - t)p_0 + tp_1
\]
Curve Normalization

Limitations:
Curve Normalization

Limitations:

• The normalized curve is not always well defined.

\[\Phi(t) = (1 - t)p_0 + tp_1 \]

\[\Phi(t) = ? \]
Curve Normalization

Limitations:

• The normalized curve is not always well defined.

• Just because points are uniformly distributed on the original curve, does not mean that they will be uniformly distributed on the normalized one.

\[\tilde{\Phi}(t) = \frac{\Phi(t)}{\|\Phi(t)\|} \]

\[\Phi(t) = (1 - t)p_0 + tp_1 \]
Curve Parameterization

• Define a parameterization of the circle/sphere.
• Compute the parameters of the end-points;
• Blend the parameters and evaluate.

SLERP (Spherical Linear Interpolation):

○ Parameterize: \((\cos \theta, \sin \theta)\)

○ Compute:

\[p_0 = (\cos \theta_0, \sin \theta_0) \]
\[p_1 = (\cos \theta_1, \sin \theta_1) \]

○ Set:

\[\Phi(t) = (\cos((1 - t)\theta_0 + t\theta_1), \sin((1 - t)\theta_0 + t\theta_1)) \]
Curve Parameterization

- Define a parameterization of the circle/sphere.
- Compute the parameters of the end-points;
- Blend the parameters and evaluate.

SLERP (Spherical Linear Interpolation):

- Parameterize: \((\cos \theta, \sin \theta)\)
- Compute:

 \[p_0 = (\cos \theta_0, \sin \theta_0) \]
 \[p_1 = (\cos \theta_1, \sin \theta_1) \]

\[\Phi(t) = \cos \frac{1}{2} (\theta_0 + t \theta_1), \sin \frac{1}{2} (\theta_0 + t \theta_1) \]

Note:
- Parameter may not be unique.
- There may not be a good parameterization.
Overview

Interpolating/Approximating

• Rotations and SVD

• Interpolating/Approximating Points
 ◦ Vectors
 ◦ Unit-Vectors

• Interpolating/Approximating Transformations
 ◦ Matrices
 ◦ Rotations
 » SVD Factorization
 » Euler Angles
Matrices

Given a collection of n matrices $\{M_0, \ldots, M_{n-1}\}$, define a curve $\Phi(t)$ that approximates/interpolates the matrices.
Matrices

Given a collection of \(n \) matrices \(\{M_0, \ldots, M_{n-1}\} \), define a curve \(\Phi(t) \) that approximates/interpolates the matrices.

As with vectors:

- **Linear Interpolation:**
 \[\Phi_k(t) = (1 - t)M_k + t \cdot M_{k+1} \]

- **Catmull-Rom Interpolation:**
 \[\Phi_k(t) = CR_0(t) \cdot p_{k-1} + CR_1(t) \cdot p_k + CR_2(t) \cdot p_{k+1} + CR_3(t) \cdot p_{k+2} \]

- **Uniform Cubic B-Spline Approximation:**
 \[\Phi_k(t) = B_{0,3}(t) \cdot p_{k-1} + B_{1,3}(t) \cdot p_k + B_{2,3}(t) \cdot p_{k+1} + B_{3,3}(t) \cdot p_{k+2} \]
Rotations

What if we add the additional constraint that the matrices \(\{M_0, \ldots, M_{n-1}\} \) and the values of the curve \(\Phi(t) \) have to be rotations?

We can’t interpolate/approximate the matrices as before, because the in-between matrices don’t have to be rotations!

We could try to normalize, by mapping every matrix \(\Phi(t) \) to the nearest rotation.
Challenge

Given a matrix M, how do you find the rotation matrix R that is closest to M?
SVD Factorization

Given a matrix M, how do you find the rotation matrix R that is closest to M?

Singular Value Decomposition (SVD) allows us to express any M as a diagonal matrix, multiplied on the left and right by the rotations R_1 and R_2:

$$M = R_1 \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} R_2$$

The closest rotation R to M is then just the rotation:

$$R = R_1 \begin{pmatrix} \text{sgn}(\lambda_1) & 0 & 0 \\ 0 & \text{sgn}(\lambda_2) & 0 \\ 0 & 0 & \text{sgn}(\lambda_3) \end{pmatrix} R_2$$
SVD Factorization

Given a matrix M, how do you find the rotation matrix R that is closest to M?

Singular Value Decomposition (SVD) allows us to express any M as a diagonal matrix, multiplied on the left and right by the rotations R_1 and R_2:

$$M = R_1 \begin{pmatrix} \text{sgn}(\lambda_1) & 0 & 0 \\ 0 & \text{sgn}(\lambda_2) & 0 \\ 0 & 0 & \text{sgn}(\lambda_3) \end{pmatrix} R_2$$

To be fully correct, you need to ensure that the product of $\text{sgn}(\lambda_i)$ is 1. If not, you need to flip the sign of the $\text{sgn}(\lambda_i)$ where $|\lambda_i|$ is smallest.

The closest rotation R to M is then just the rotation:

$$R = R_1 \begin{pmatrix} \text{sgn}(\lambda_1) & 0 & 0 \\ 0 & \text{sgn}(\lambda_2) & 0 \\ 0 & 0 & \text{sgn}(\lambda_3) \end{pmatrix} R_2$$
Euler Angles

Every rotation matrix R can be expressed as:

- some rotation about the x-axis, multiplied by
- some rotation about the y-axis, multiplied by
- some rotation about the z-axis:

$$R(\theta, \phi, \psi) = R_x(\theta)R_y(\phi)R_z(\psi)$$

The angles (θ, ϕ, ψ) are called the Euler angles.
Euler Angles

Instead of blending matrices and then normalizing using SVD, we can blend the Euler angles:

- For each M_k, compute the Euler angles $(\theta_k, \phi_k, \psi_k)$
Euler Angles

Instead of blending matrices and then normalizing using SVD, we can blend the Euler angles:

- For each M_k, compute the Euler angles $(\theta_k, \phi_k, \psi_k)$
- Interpolate/Approximate the Euler angles:
Euler Angles

Instead of blending matrices and then normalizing using SVD, we can blend the Euler angles:

- For each M_k, compute the Euler angles $(\theta_k, \phi_k, \psi_k)$
- Interpolate/Approximate the Euler angles:

 » Linear Interpolation:

 - $\theta_k(t) = (1 - t)\theta_k + t \cdot \theta_{k+1}$
 - $\phi_k(t) = (1 - t)\phi_k + t \cdot \phi_{k+1}$
 - $\psi_k(t) = (1 - t)\psi_k + t \cdot \psi_{k+1}$
Euler Angles

Instead of blending matrices and then normalizing using SVD, we can blend the Euler angles:

- For each M_k, compute the Euler angles $(\theta_k, \phi_k, \psi_k)$
- Interpolate/Approximate the Euler angles:
 - Linear Interpolation
 - Catmull-Rom Interpolation:
 - $\theta_k(t) = CR_0(t) \cdot \theta_{k-1} + CR_1(t) \cdot \theta_k + CR_2(t) \cdot \theta_{k+1} + CR_3(t) \cdot \theta_{k+2}$
 - $\phi_k(t) = CR_0(t) \cdot \phi_{k-1} + CR_1(t) \cdot \phi_k + CR_2(t) \cdot \phi_{k+1} + CR_3(t) \cdot \phi_{k+2}$
 - $\psi_k(t) = CR_0(t) \cdot \psi_{k-1} + CR_1(t) \cdot \psi_k + CR_2(t) \cdot \psi_{k+1} + CR_3(t) \cdot \psi_{k+2}$
Euler Angles

Instead of blending matrices and then normalizing using SVD, we can blend the Euler angles:

- For each M_k, compute the Euler angles $(\theta_k, \phi_k, \psi_k)$
- Interpolate/Approximate the Euler angles:
 - » Linear Interpolation
 - » Catmull-Rom Interpolation
 - » Uniform Cubic B-Spline Approximation:
 - $\theta_k(t) = B_{0,3}(t) \cdot \theta_{k-1} + B_{1,3}(t) \cdot \theta_k + B_{2,3}(t) \cdot \theta_{k+1} + B_{3,3}(t) \cdot \theta_{k+2}$
 - $\phi_k(t) = B_{0,3}(t) \cdot \phi_{k-1} + B_{1,3}(t) \cdot \phi_k + B_{2,3}(t) \cdot \phi_{k+1} + B_{3,3}(t) \cdot \phi_{k+2}$
 - $\psi_k(t) = B_{0,3}(t) \cdot \psi_{k-1} + B_{1,3}(t) \cdot \psi_k + B_{2,3}(t) \cdot \psi_{k+1} + B_{3,3}(t) \cdot \psi_{k+2}$
Euler Angles

Instead of blending matrices and then normalizing using SVD, we can blend the Euler angles:

- For each M_k, compute the Euler angles $(\theta_k, \phi_k, \psi_k)$
- Interpolate/Approximate the Euler angles:
 - Linear Interpolation
 - Catmull-Rom Interpolation
 - Uniform Cubic B-Spline Approximation
- Set the value of the in-between matrix to:
 $$\Phi_k(t) = R_x(\theta_k(t))R_y(\phi_k(t))R_z(\psi_k(t))$$

Note that to blend rigid transformations, we want to do the standard blend of the translation component and the constrained blend of the rotation.