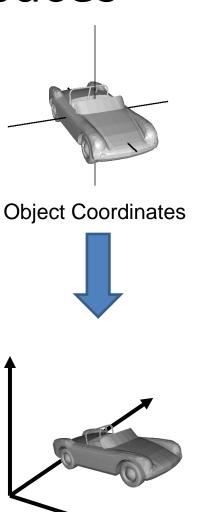
Physically Based Rendering (600.657)

Cameras

Coordinate Spaces

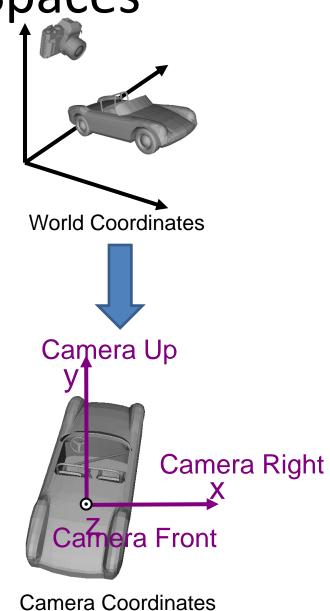
- Object
- World
- Camera
- Screen
- NDC
- Raster



World Coordinates

Coordinate Spaces

- Object
- World
- Camera
- Screen
- NDC
- Raster

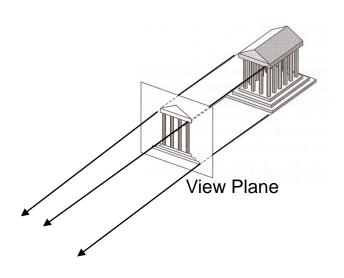


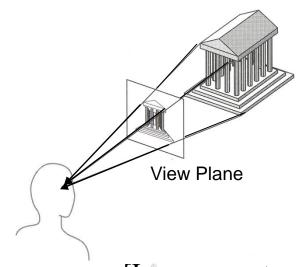
Camera-to-Screen Transformation

- Linear Models (Projective)
 - Orthographic
 - Perspective
- Non-Linear Models
 - Depth of Field

Projective:

The mapping from camera space to screen space is defined by a projective 4x4 matrix.



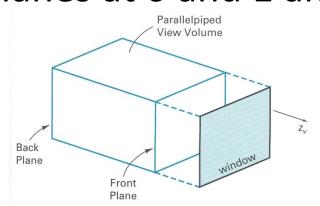


[Images courtesy of Angel]

<u>Projective</u>:

The mapping from camera space to screen space is defined by a projective 4x4 matrix.

Given near/ far z values, transform the volume into a box with points on the corresponding planes at 0 and 1 along the z-axis.

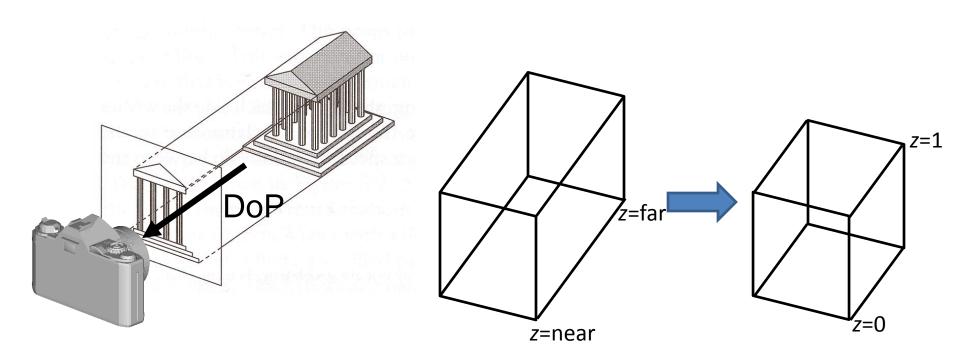


Back Plane Front Plane Plane Point

[Images courtesy of H&B]

Orthographic:

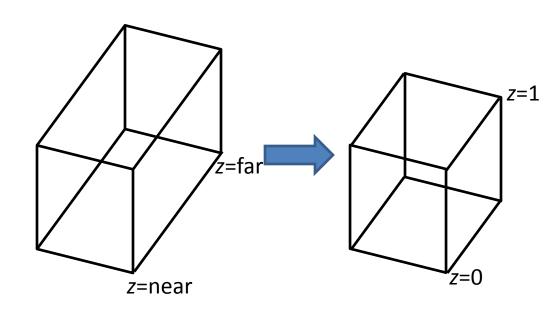
The mapping from 3D to 2D is performed by projecting along an axis (typically the z-axis).



Orthographic:

The mapping from 3D to 2D is performed by projecting along an axis (typically the z-axis).

$$\begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} x \\ y \\ \frac{z - near}{far - near} \\ 1 \end{pmatrix}$$



Orthographic:

The mapping from 3D to 2D is performed by projecting along an axis (typically the z-axis).

$$\begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} x \\ y \\ z - near \\ far - near \\ 1 \end{pmatrix}$$

$$P = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{far - near} & \frac{-near}{far - near} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$z = far$$

Orthographic:

To generate a ray through pixel (i,j):

$$(i,j) \rightarrow (s,t) = \left(\frac{i}{width}, \frac{j}{height}\right)$$

Orthographic:

To generate a ray through pixel (i,j):

$$(i, j) \rightarrow (s, t) = \left(\frac{i}{width}, \frac{j}{height}\right)$$

 $\rightarrow (x, y, z) = \left(xStart + s(xStop - xStart), yStop + t(yStart - yStop), 0\right)$

Orthographic:

To generate a ray through pixel (i,j):

$$(i, j) \rightarrow (s, t) = \left(\frac{i}{width}, \frac{j}{height}\right)$$

$$\rightarrow (x, y, z) = \left(xStart + s(xStop - xStart), yStop + t(yStart - yStop), 0\right)$$

$$\rightarrow (c_x, c_y, c_z) = (x, y, z + near)$$

Orthographic:

To generate a ray through pixel (i,j):

Map to the front plane in camera-space:

$$(i, j) \rightarrow (s, t) = \left(\frac{i}{width}, \frac{j}{height}\right)$$

$$\rightarrow (x, y, z) = \left(xStart + s(xStop - xStart), yStop + t(yStart - yStop), 0\right)$$

$$\rightarrow (c_x, c_y, c_z) = (x, y, z + near)$$

Set the ray start position and direction:

$$ray.start = (c_x, c_y, c_z)$$
$$ray.dir = (0,0,1)$$

Orthographic:

To generate a ray through pixel (i,j):

Map to the front plane in camera-space:

$$(i, j) \rightarrow (s, t) = \left(\frac{i}{width}, \frac{j}{height}\right)$$

$$\rightarrow (x, y, z) = \left(xStart + s(xStop - xStart), yStop + t(yStart - yStop), 0\right)$$

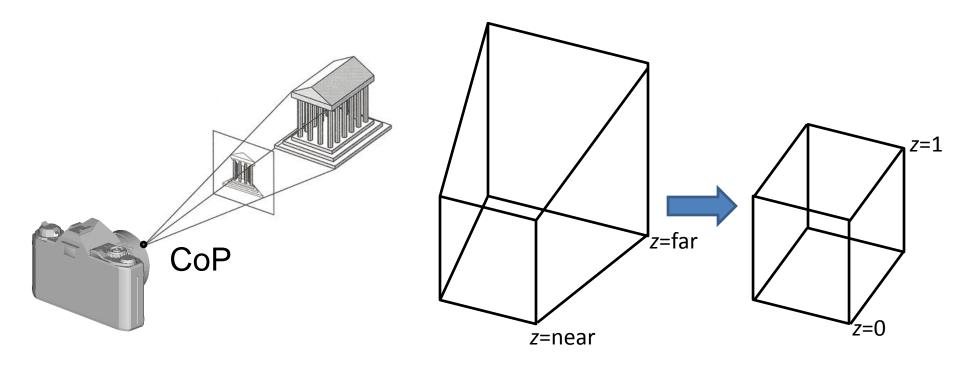
$$\rightarrow (c_x, c_y, c_z) = (x, y, z + near)$$

Set the ray start position and direction:

$$ray.start = (c_x, c_y, c_z)$$
$$ray.dir = (0,0,1)$$

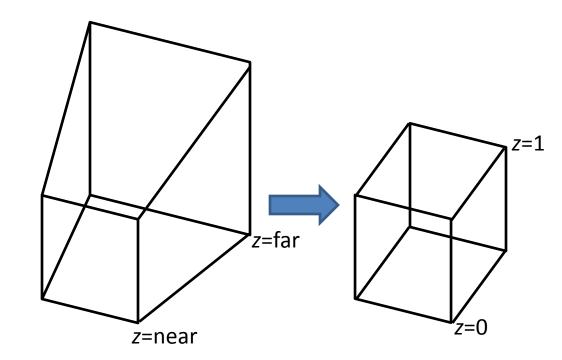
Transform the ray to world space.

Perspective:

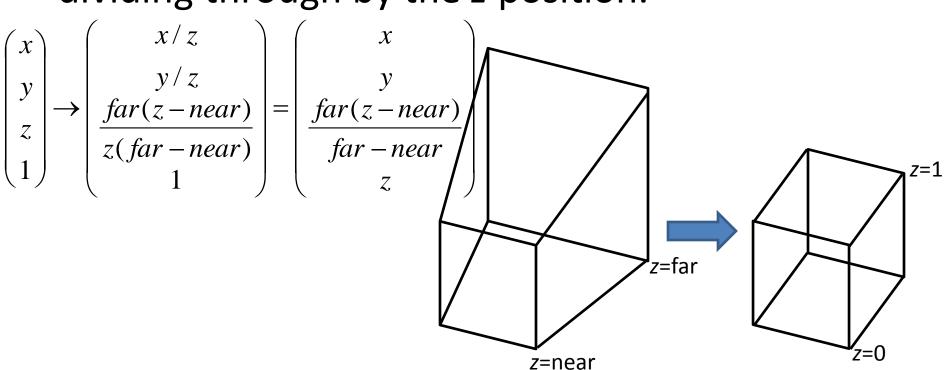


Perspective:

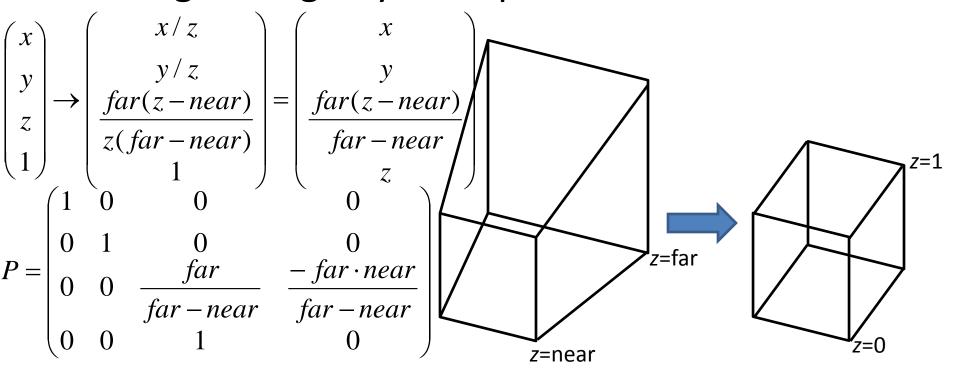
$$\begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} x/z \\ y/z \\ \frac{far(z-near)}{z(far-near)} \\ 1 \end{pmatrix}$$



Perspective:



Perspective:



Perspective:

To generate a ray through pixel (i,j):

$$(i,j) \rightarrow (s,t) = \left(\frac{i}{width}, \frac{j}{height}\right)$$

Perspective:

To generate a ray through pixel (i,j):

$$(i, j) \rightarrow (s, t) = \left(\frac{i}{width}, \frac{j}{height}\right)$$

 $\rightarrow (x, y, z) = \left(xStart + s\left(xStop - xStart\right), yStop + t\left(yStart - yStop\right), 0\right)$

Perspective:

To generate a ray through pixel (i,j):

$$(i, j) \rightarrow (s, t) = \left(\frac{i}{width}, \frac{j}{height}\right)$$

$$\rightarrow (x, y, z) = \left(xStart + s(xStop - xStart), yStop + t(yStart - yStop), 0\right)$$

$$\rightarrow (c_x, c_y, c_z) = \left(x \cdot near, y \cdot near, near, 1\right)$$

Perspective:

To generate a ray through pixel (i,j):

Map to the front plane in camera-space:

$$(i, j) \rightarrow (s, t) = \left(\frac{i}{width}, \frac{j}{height}\right)$$

$$\rightarrow (x, y, z) = \left(xStart + s(xStop - xStart), yStop + t(yStart - yStop), 0\right)$$

$$\rightarrow (c_x, c_y, c_z) = \left(x \cdot near, y \cdot near, near, 1\right)$$

Set the ray start position and direction:

$$ray.start = (0,0,0)$$
$$ray.dir = (c_x, c_y, c_z)$$

Perspective:

To generate a ray through pixel (i,j):

Map to the front plane in camera-space:

$$(i, j) \rightarrow (s, t) = \left(\frac{i}{width}, \frac{j}{height}\right)$$

$$\rightarrow (x, y, z) = \left(xStart + s(xStop - xStart), yStop + t(yStart - yStop), 0\right)$$

$$\rightarrow (c_x, c_y, c_z) = \left(x \cdot near, y \cdot near, near, 1\right)$$

Set the ray start position and direction:

$$ray.start = (0,0,0)$$
$$ray.dir = (c_x, c_y, c_z)$$

Transform the ray to world space.

Depth of Field:

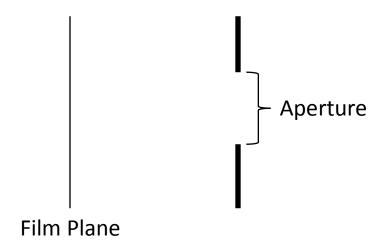
In practice, cameras are not pinhole. They have a finite aperture and a lens that defines a focal plane.

Close Focused

Distance Focused

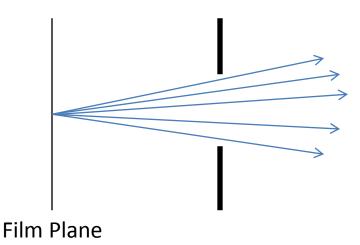
Depth of Field:

Finite aperture



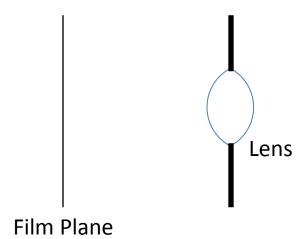
Depth of Field:

- Finite aperture
 - Many rays falling on a single point in the film plane results in blurring.



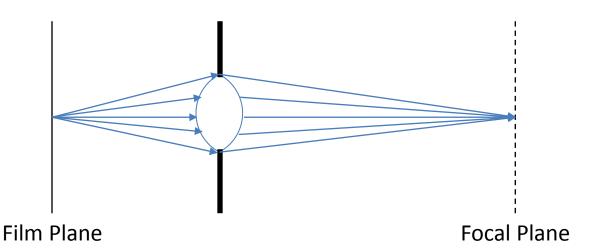
<u>Depth of Field</u>:

- Finite aperture
- Lens



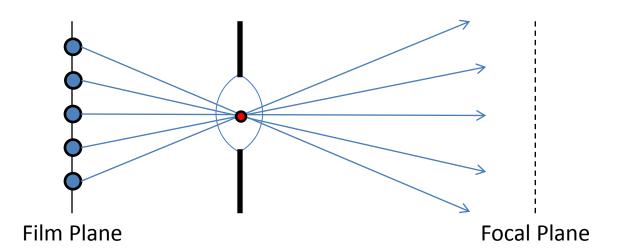
Depth of Field:

- Finite aperture
- Lens
 - All rays emanating from a point on the film will intersect on a common (focal) plane.



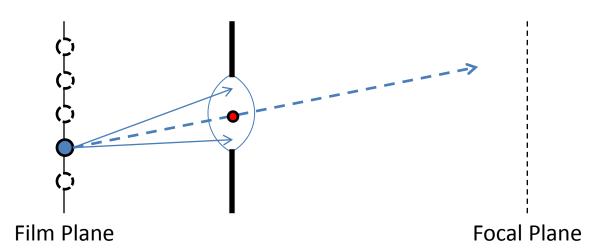
Simulating Depth of Field:

 For each point on the film plane construct a primary ray through the center of the aperture.



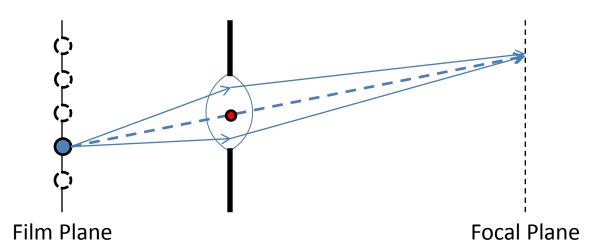
Simulating Depth of Field:

- For each point on the film plane construct a primary ray through the center of the aperture.
- Generate random rays through the lens



Simulating Depth of Field:

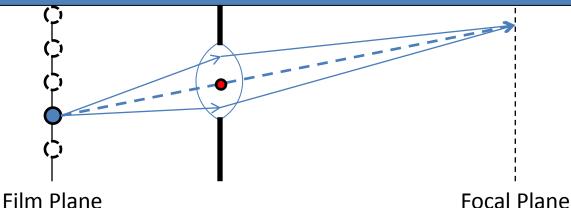
- For each point on the film plane construct a primary ray through the center of the aperture.
- Generate random rays through the lens
- These rays meet at the film-plane



Simulating Depth of Field:

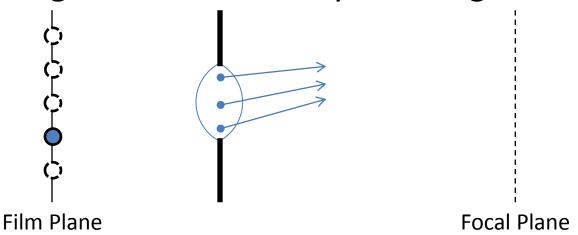
 For each point on the film plane construct a primary ray through the center of the aperture.

Since the primary ray travels in a straight line, we can get the point of intersection by intersecting the ray with the plane



Simulating Depth of Field:

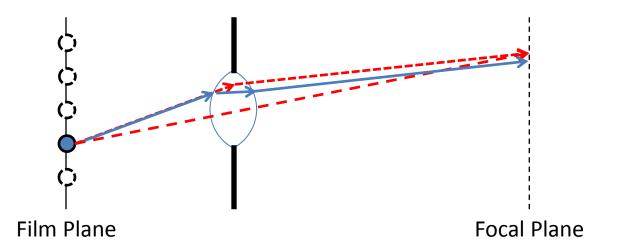
- For each point on the film plane construct a primary ray through the center of the aperture.
- Generate random rays through the lens
- These rays meet at the film-plane
- Average over the new rays starting on the lens.



Simulating Depth of Field:

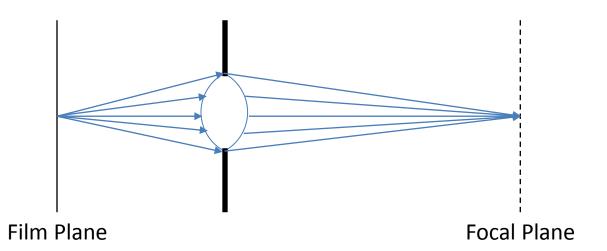
Note that this is an approximation based on the assumption that the lens is thin.

In practice, the ray will refract twice when passing through the lens.



Depth of Field

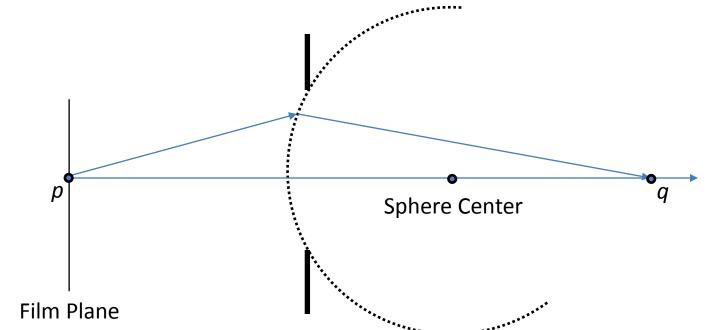
Why/When is it true that rays emanating from a common point on the film plane intersect on a common point on the focal plane?



[Using slides from Pat Hanarhan and Marc Levoy]

Consider light entering a spherical lens.

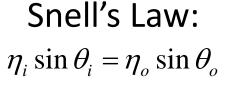
- 1. Sphere radius is large relative to aperture
- 2. Distance to film is large relative to aperture

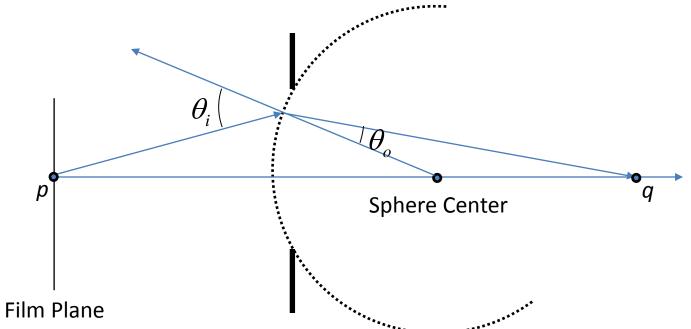


[Using slides from Pat Hanarhan and Marc Levoy]

Consider light entering a spherical lens.

- 1. Sphere radius is large relative to aperture
- 2. Distance to film is large relative to aperture





[Using slides from Pat Hanarhan and Marc Levoy]

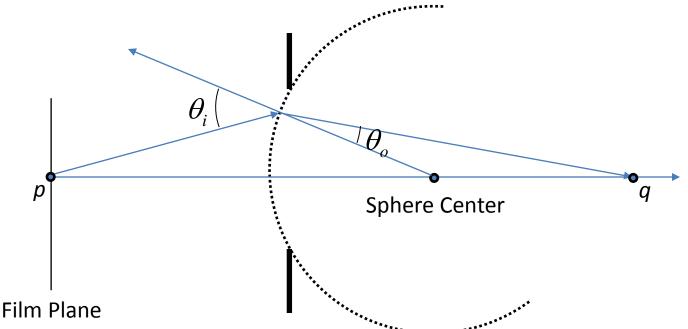
Consider light entering a spherical lens.

Assume:

- 1. Sphere radius is large relative to aperture
- 2. Distance to film is large relative to aperture

Snell's Law:

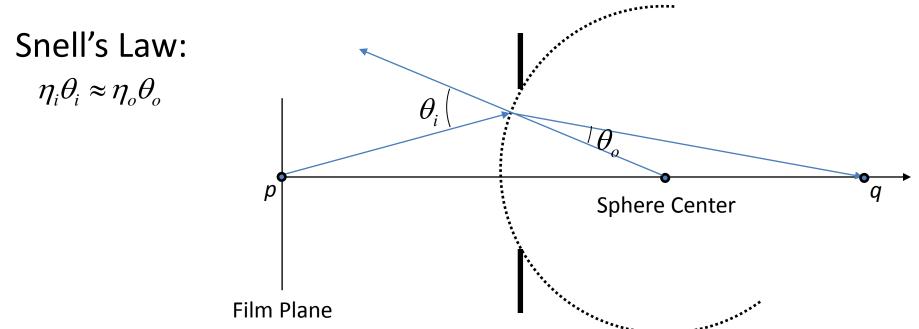
$$\eta_i \sin \theta_i = \eta_o \sin \theta_o$$
$$\eta_i \theta_i \approx \eta_o \theta_o$$



[Using slides from Pat Hanarhan and Marc Levoy]

Consider light entering a spherical lens.

- 1. Sphere radius is large relative to aperture
- 2. Distance to film is large relative to aperture

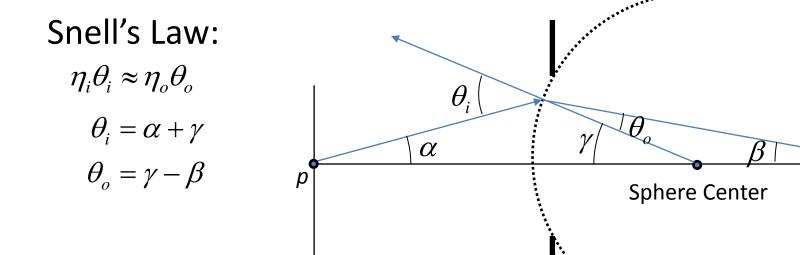


[Using slides from Pat Hanarhan and Marc Levoy]

Consider light entering a spherical lens.

Assume:

- 1. Sphere radius is large relative to aperture
- 2. Distance to film is large relative to aperture

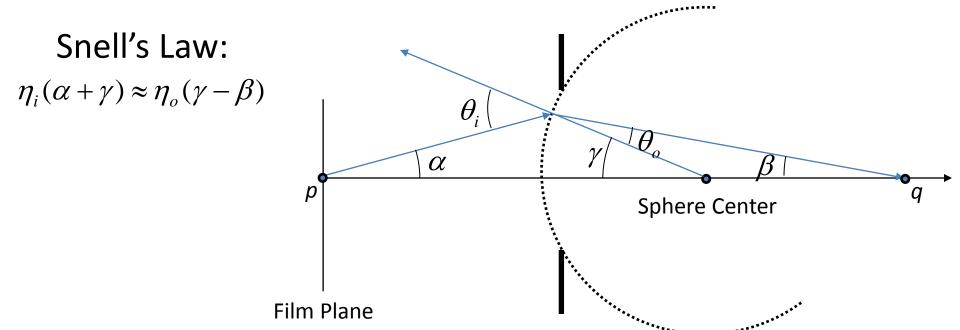


Film Plane

[Using slides from Pat Hanarhan and Marc Levoy]

Consider light entering a spherical lens.

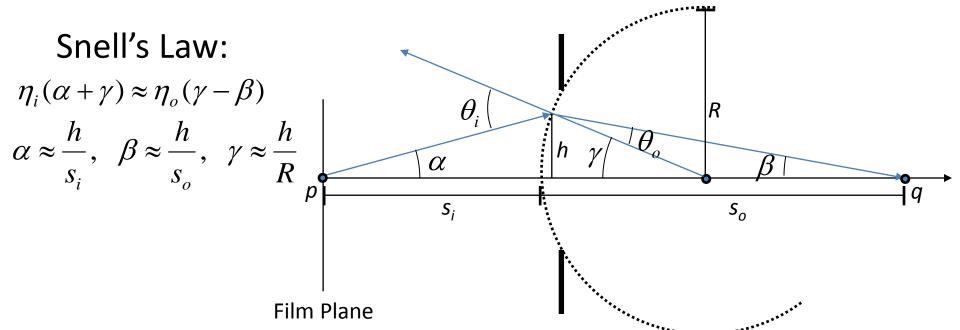
- 1. Sphere radius is large relative to aperture
- 2. Distance to film is large relative to aperture



[Using slides from Pat Hanarhan and Marc Levoy]

Consider light entering a spherical lens.

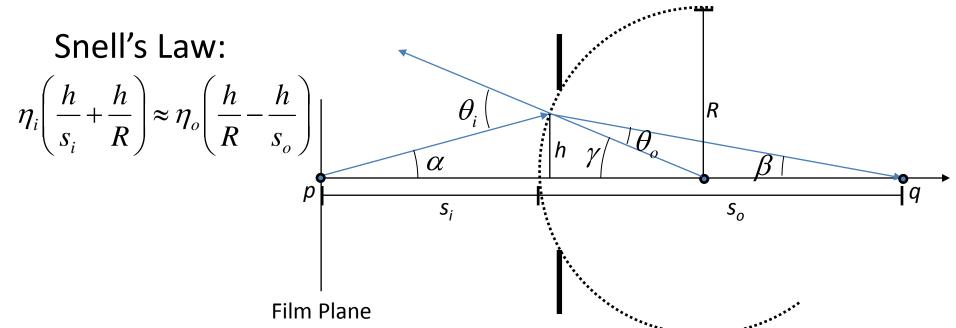
- 1. Sphere radius is large relative to aperture
- 2. Distance to film is large relative to aperture



[Using slides from Pat Hanarhan and Marc Levoy]

Consider light entering a spherical lens.

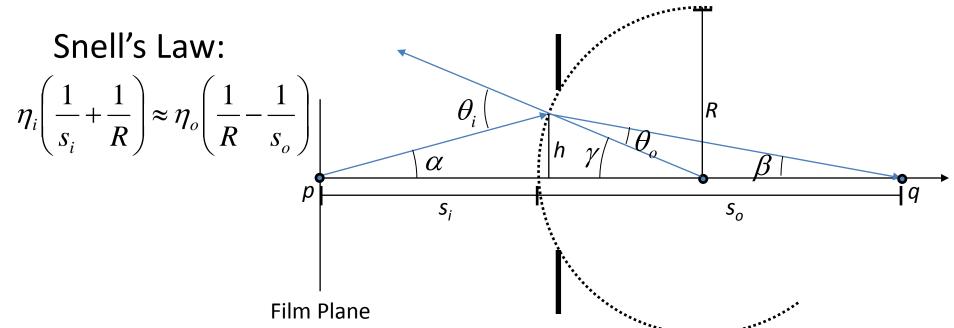
- 1. Sphere radius is large relative to aperture
- 2. Distance to film is large relative to aperture



[Using slides from Pat Hanarhan and Marc Levoy]

Consider light entering a spherical lens.

- 1. Sphere radius is large relative to aperture
- 2. Distance to film is large relative to aperture

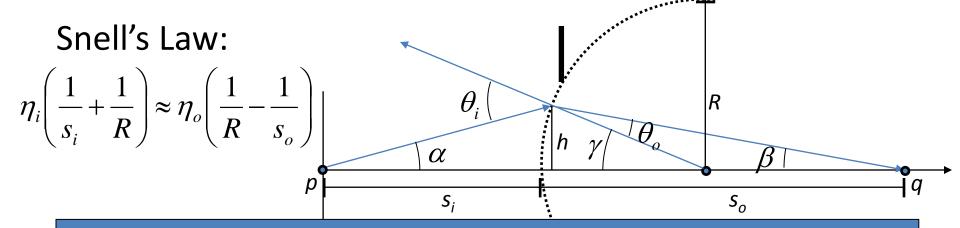


[Using slides from Pat Hanarhan and Marc Levoy]

Consider light entering a spherical lens.

Assume:

- 1. Sphere radius is large relative to aperture
- 2. Distance to film is large relative to aperture



The distance s_o only depends on s_i and not on h. So all rays leaving p pass through q, regardless of angle.