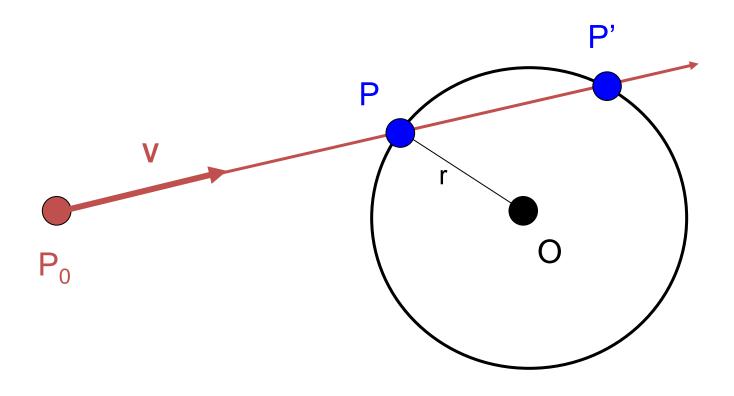
Physically Based Rendering (600.657)

Shapes

Ray: $P = P_0 + tV$

Sphere: $|P - O|^2 - r^2 = 0$

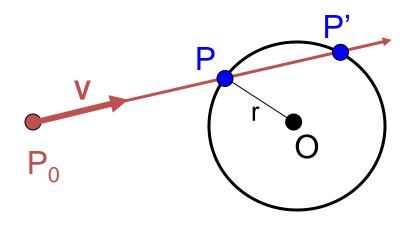


Ray: $P = P_0 + tV$

Sphere: $|P - O|^2 - r^2 = 0$

Substituting for P, we get:

$$|\mathbf{P_0} + \mathbf{tV} - \mathbf{O}|^2 - r^2 = 0$$



Ray: $P = P_0 + tV$

Sphere: $|P - O|^2 - r^2 = 0$

Substituting for P, we get:

$$|\mathbf{P_0} + \mathbf{tV} - \mathbf{O}|^2 - r^2 = 0$$

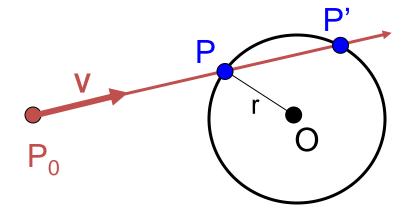
Solve quadratic equation:

$$at^2 + bt + c = 0$$

where:

$$a = 1$$

 $b = 2 V \cdot (P_0 - O)$
 $c = |P_0 - O|^2 - r^2$



Ray: $P = P_0 + tV$

Sphere: $|P - O|^2 - r^2 = 0$

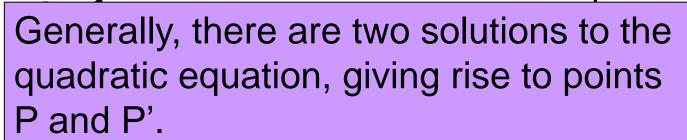
Substituting for P, we get:

$$|\mathbf{P_0} + \mathbf{tV} - \mathbf{O}|^2 - r^2 = 0$$

Solve quadratic equation:

$$at^2 + bt + c = 0$$

where:



You want to return the first (positive) hit.

Ray: $P = P_0 + tV$

Sphere: $|P - O|^2 - r^2 = 0$

Substituting for P, we get:

$$|\mathbf{P_0} + \mathbf{tV} - \mathbf{O}|^2 - r^2 = 0$$

Unless V is a unit-vector, t is **not** the distance the ray travels before intersecting.

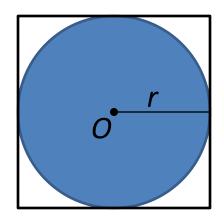
Generally, there are two solutions to the quadratic equation, giving rise to points P and P'.

You want to return the first (positive) hit.

Bounding the Sphere

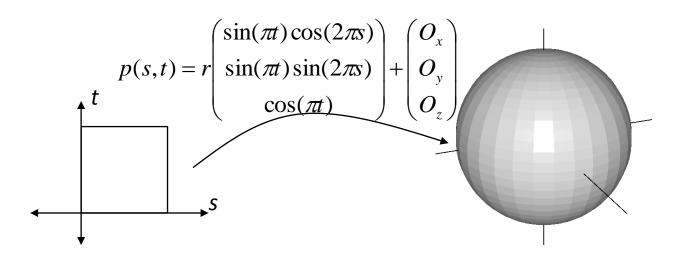
Bounding Box:

$$-[O_x-r,O_y-r,O_z-r],[O_x+r,O_y+r,O_z+r]$$



• Parametric Equation:

$$p(s,t) = r\left(\sin(\pi t)\cos(2\pi s), \sin(\pi t)\sin(2\pi s), \cos(\pi t)\right) + \left(O_x, O_y, O_z\right)$$



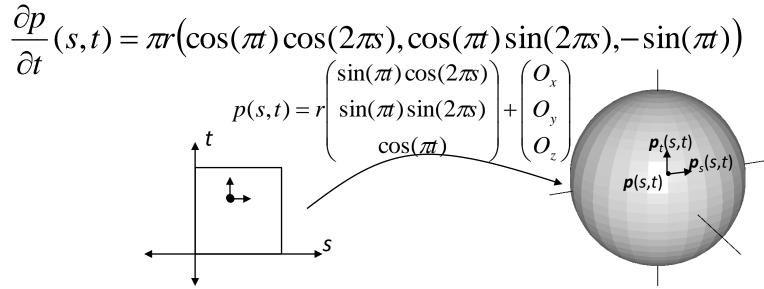
Parametric Equation:

$$p(s,t) = r\left(\sin(\pi t)\cos(2\pi s), \sin(\pi t)\sin(2\pi s), \cos(\pi t)\right) + \left(O_x, O_y, O_z\right)$$

• Partials:

$$\frac{\partial p}{\partial s}(s,t) = 2\pi r \left(-\sin(\pi t)\sin(2\pi s),\sin(\pi t)\cos(2\pi s),0\right)$$

$$\frac{\partial p}{\partial t}(s,t) = \pi r \left(\cos(\pi t)\cos(2\pi s),\cos(\pi t)\sin(2\pi s),-\sin(\pi t)\right)$$



Parametric Equation:

$$p(s,t) = r\left(\sin(\pi t)\cos(2\pi s), \sin(\pi t)\sin(2\pi s), \cos(\pi t)\right) + \left(O_x, O_y, O_z\right)$$

• Partials:

Thus:
$$\frac{\partial p}{\partial s}(s,t) = 2\pi r \left(-\sin(\pi t)\sin(2\pi s),\sin(\pi t)\cos(2\pi s),0\right)$$
Why do we care?
$$\frac{\partial p}{\partial t}(s,t) = \pi r \left(\cos(\pi t)\cos(2\pi s),\cos(\pi t)\sin(2\pi s),-\sin(\pi t)\right)$$

$$p(s,t) = r \left(\sin(\pi t)\cos(2\pi s)\right)$$

$$t \left(\cos(\pi t)\cos(2\pi s)\right)$$

$$cos(\pi t)$$

$$p(s,t) = r \left(\sin(\pi t)\cos(2\pi s)\right)$$

$$cos(\pi t)$$

$$p(s,t) = r \left(\sin(\pi t)\sin(2\pi s)\right)$$

$$p(s,t) = r \left(\sin(\pi t)\cos(2\pi s)\right)$$

$$p(s,t) = r \left(\sin(\pi t)\cos(2\pi s)\right)$$

$$p(s,t) = r \left(\cos(\pi t)\cos(2\pi s)\right)$$

$$p(s,t) = r \left(\sin(\pi t)\cos(2\pi s)\right)$$

$$p(s,t) = r \left(\cos(\pi t)\cos(2\pi s)\right)$$

$$p(s,t) = r \left(\sin(\pi t)\cos(2\pi s)\right)$$

$$p(s,t) = r \left(\cos(\pi t)\cos(2\pi s)\right)$$

Why do we care?

1. Partial derivatives gives us the normal:

$$\vec{n}(s,t) = \frac{\frac{\partial p}{\partial s} \times \frac{\partial p}{\partial t}}{\left\| \frac{\partial p}{\partial s} \times \frac{\partial p}{\partial t} \right\|}$$

Why do we care?

1. Partial derivatives gives us the normal:

$$\vec{n}(s,t) = \frac{\frac{\partial p}{\partial s} \times \frac{\partial p}{\partial t}}{\left\|\frac{\partial p}{\partial s} \times \frac{\partial p}{\partial t}\right\|}$$

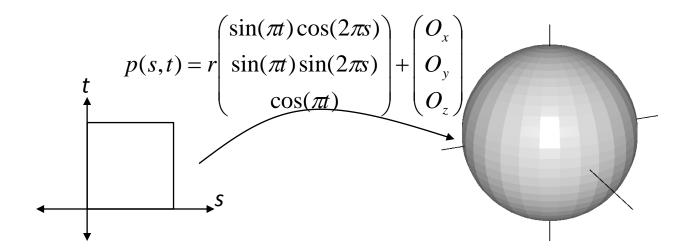
$$\frac{\partial p}{\partial s}(s,t) = 2\pi r \left(-\sin(\pi t)\sin(2\pi s), \sin(\pi t)\cos(2\pi s), 0\right)$$

$$\frac{\partial p}{\partial t}(s,t) = \pi r \left(\cos(\pi t)\cos(2\pi s), \cos(\pi t)\sin(2\pi s), -\sin(\pi t)\right)$$

$$\vec{n}(s,t) = -\left(\cos(2\pi s)\sin(\pi t), \sin(2\pi s)\sin(\pi t), \cos(\pi t)\right)$$

Why do we care?

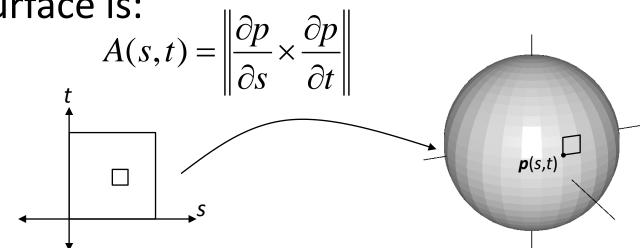
2. Partial derivatives let us compute integrals over the geometry.



Why do we care?

3. Partial derivatives let us compute integrals over the geometry.

For a unit square in the parameterization domain, the area of the corresponding patch on the surface is:



Why do we care?

3. Partial derivatives let us compute integrals over the geometry.

For a unit square in the parameterization domain, the area of the corresponding patch on the surface is:

$$A(s,t) = \left\| \frac{\partial p}{\partial s} \times \frac{\partial p}{\partial t} \right\|$$

So integrals become:
$$\int_{p \in S} f(p)dp = \int_{0}^{1} \int_{0}^{1} f(s,t)A(s,t)dtds$$

Why do we care?

3. Partial derivatives let us compute integrals over the geometry.

For example, on the sphere we have:

$$\frac{\partial p}{\partial s}(s,t) = 2\pi r \left(-\sin(\pi t)\sin(2\pi s), \sin(\pi t)\cos(2\pi s), 0\right)$$

$$\frac{\partial p}{\partial t}(s,t) = \pi r \left(\cos(\pi t)\cos(2\pi s), \cos(\pi t)\sin(2\pi s), -\sin(\pi t)\right)$$

$$A(s,t) = 2\pi^2 r^2 \sin(\pi t)$$

Why do we care?

3. Partial derivatives let us compute integrals over the geometry.

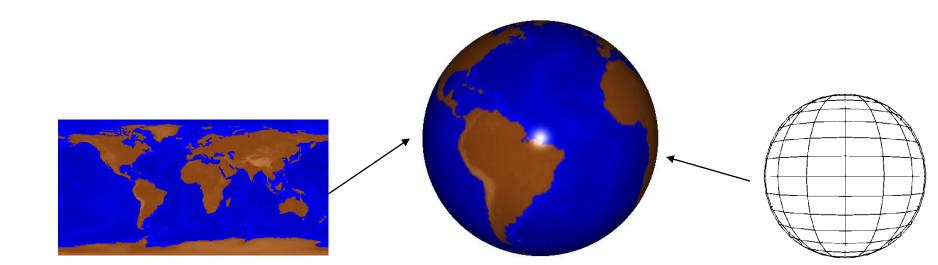
For example, on the sphere we have:

$$A(s,t) = 2\pi^2 r^2 \sin(\pi t)$$

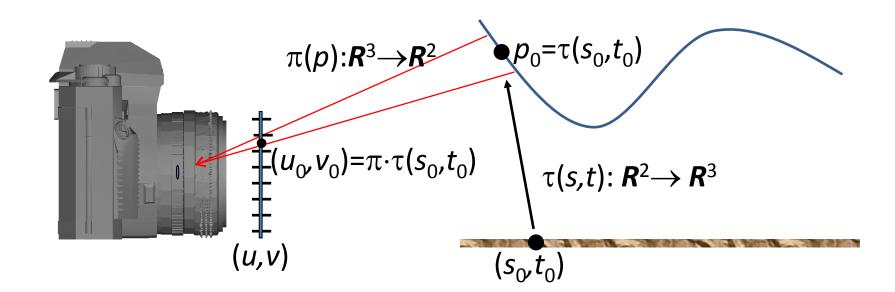
So the area is:

$$\int_{n \in S^2} 1 dp = 2\pi^2 r^2 \int_{0}^{1} \int_{0}^{1} \sin(\pi t) dt ds = 4\pi r^2$$

Why do we care?

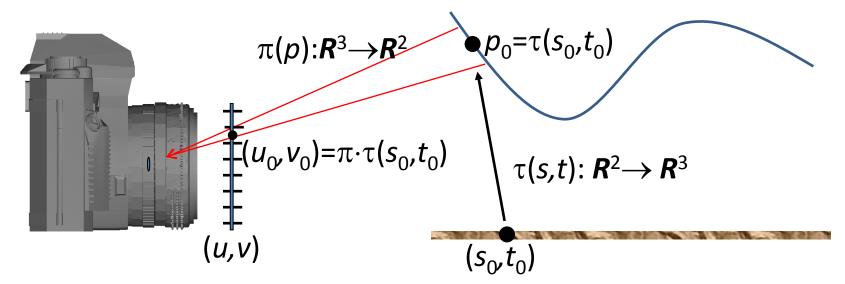


Why do we care?



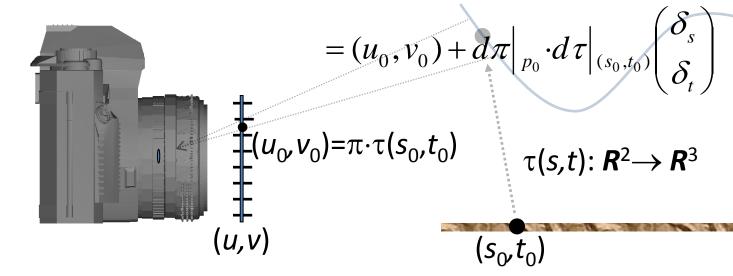
Why do we care?

$$(\pi \circ \tau)(s_0 + \delta_s, t_0 + \delta_t) \approx (\pi \circ \tau)(s_0, t_0) + d(\pi \circ \tau) \begin{pmatrix} \delta_s \\ \delta_t \end{pmatrix}$$



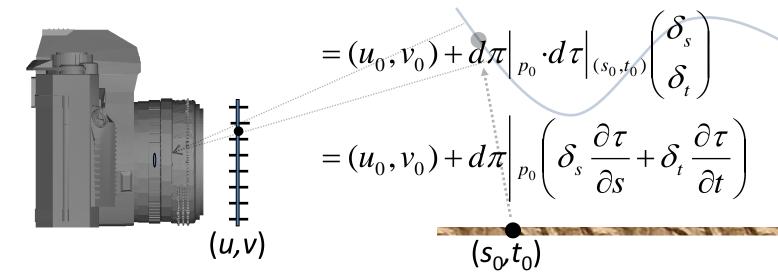
Why do we care?

$$(\pi \circ \tau)(s_0 + \delta_s, t_0 + \delta_t) \approx (\pi \circ \tau)(s_0, t_0) + d(\pi \circ \tau)|_{(s_0, t_0)} \begin{pmatrix} \delta_s \\ \delta_t \end{pmatrix}$$



Why do we care?

$$(\pi \circ \tau)(s_0 + \delta_s, t_0 + \delta_t) \approx (\pi \circ \tau)(s_0, t_0) + d(\pi \circ \tau)\Big|_{(s_0, t_0)} \begin{pmatrix} \delta_s \\ \delta_t \end{pmatrix}$$



Why do we care?

In practice, we are more interested in the equation:

$$(\pi \circ \tau)^{-1} (y_0 + \delta_u, v_0 + \delta_v) \approx (s_0, t_0) + \left(d(\pi \circ \tau)|_{(s_0, t_0)}\right)^{-1} \begin{pmatrix} \delta_u \\ \delta_v \end{pmatrix}$$

since it tells us how texture changes as we move in the film-plane.

Why do we care?

In practice, we are more interested in the equation:

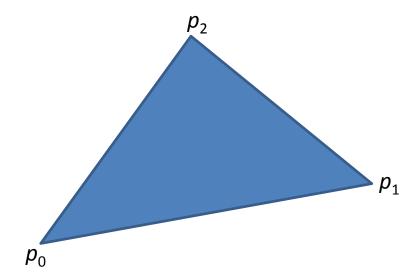
$$(\pi \circ \tau)^{-1} (y_0 + \delta_u, v_0 + \delta_v) \approx (s_0, t_0) + (d(\pi \circ \tau)|_{(s_0, t_0)})^{-1} \begin{pmatrix} \delta_u \\ \delta_v \end{pmatrix}$$

This is good for anti-aliasing textures. To anti-alias textures reflected off the surface, we also need to know how the normals change on the reflecting surface.

Triangles

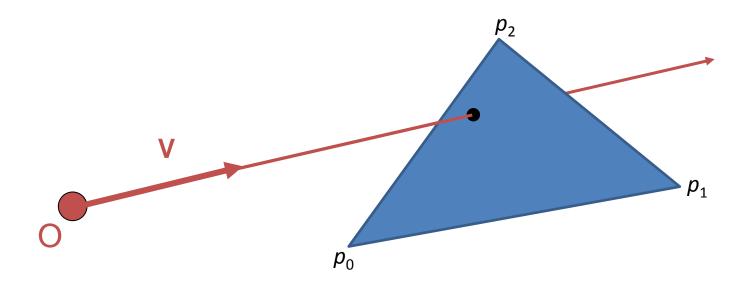
Described by three vertices:

- Position: $\{p_i\}$
- Parameter values: $\{(u_i, v_i)\}$
- Normals: $\{n_i\}$



Ray: P = O + tV

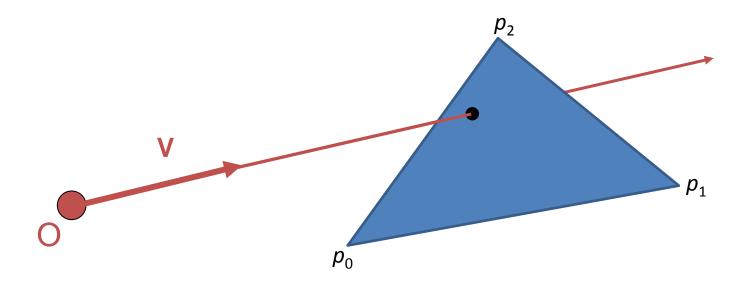
Triangle: $(1-b_1-b_2)p_0+b_1p_1+b_2p_2$ with $0 \le b_1,b_2 \le 1$



Ray: P = O + tV

Triangle: $(1-b_1-b_2)p_0+b_1p_1+b_2p_2$ with $0 \le b_1,b_2 \le 1$

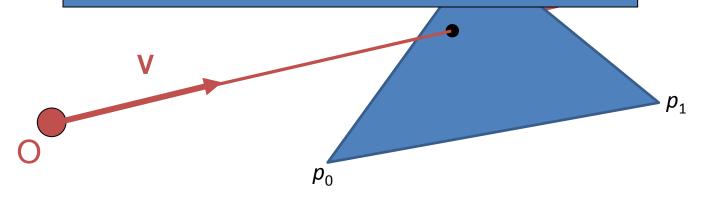
$$\begin{pmatrix} -v_x & p_{1x} - p_{0x} & p_{2x} - p_{0x} \\ -v_y & p_{1y} - p_{0y} & p_{2y} - p_{0y} \\ -v_z & p_{1z} - p_{0z} & p_{2z} - p_{0z} \end{pmatrix} \begin{pmatrix} t \\ b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} O_x - p_{0x} \\ O_y - p_{0y} \\ O_z - p_{0z} \end{pmatrix}$$



Ray: P = O + tV

Triangle: $(1-b_1-b_2)p_0+b_1p_1+b_2p_2$ with $0 \le b_1,b_2 \le 1$

Note that $(1-b_1-b_2)$, b_1 , and b_2 are the barycentric coordinates of the point of intersection.



Ray: P = O + tV

Triangle: $(1-b_1-b_2)p_0+b_1p_1+b_2p_2$ with $0 \le b_1,b_2 \le 1$

the barycentric coordinates of the

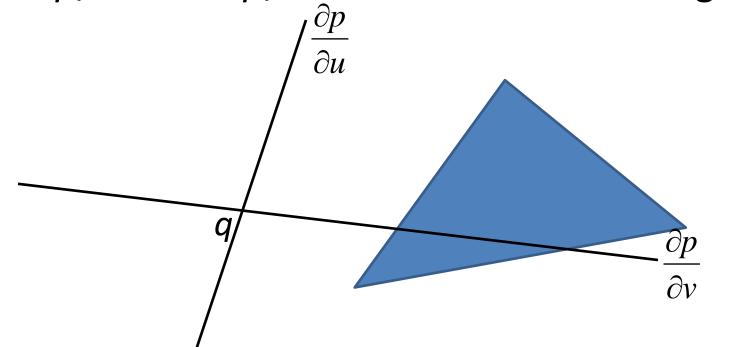
The parametric coordinates of the intersection are:

$$(1-b_1-b_2)(u_0,v_0)+b_1(u_1,v_1)+b_2(u_2,v_2)$$

We expect a parameterization of the triangle that is linear: $\partial p = \partial p$

$$p(u,v) = q + u \frac{\partial p}{\partial u} + v \frac{\partial p}{\partial v}$$

with $\partial p/\partial u$ and $\partial p/\partial v$ constant on the triangle.



We expect a parameterization of the triangle that is linear: $\partial n = \partial n$

$$p(u,v) = q + u \frac{\partial p}{\partial u} + v \frac{\partial p}{\partial v}$$

with $\partial p/\partial u$ and $\partial p/\partial v$ constant on the triangle.

Given the parameter values $\{(u_i, v_i)\}$ at the three corners, q, $\partial p/\partial u$ and $\partial p/\partial v$ satisfy:

$$p_i = q + u_i \frac{\partial p}{\partial u} + v_i \frac{\partial p}{\partial v}$$

We expect a parameterization of the triangle that is linear: $\partial p = \partial p$

$$p(u,v) = q + u \frac{\partial p}{\partial u} + v \frac{\partial p}{\partial v}$$

with $\partial p/\partial u$ and $\partial p/\partial v$ constant on the triangle.

Given the parameter values $\{(u_i, v_i)\}$ at the three corners, q, $\partial p/\partial u$ and $\partial p/\partial v$ satisfy:

$$p_{i} = q + u_{i} \frac{\partial p}{\partial u} + v_{i} \frac{\partial p}{\partial v}$$

$$p_{i} - p_{1} = (u_{i} - u_{1}) \frac{\partial p}{\partial u} + (v_{i} - v_{1}) \frac{\partial p}{\partial v}$$

$$p_i - p_1 = (u_i - u_1) \frac{\partial p}{\partial u} + (v_i - v_1) \frac{\partial p}{\partial v}$$

We obtain the partials by solving:

$$\begin{pmatrix} (p_2 - p_1)_{x/y/z} \\ (p_3 - p_1)_{x/y/z} \end{pmatrix} = \begin{pmatrix} u_2 - u_1 & v_2 - v_1 \\ u_3 - u_1 & v_3 - v_1 \end{pmatrix} \begin{pmatrix} \frac{\partial p}{\partial u} \\ \frac{\partial p}{\partial v} \end{pmatrix}_{x/y/z}$$

Shading the Triangle

In addition to the true geometry (e.g. constant normal) there is also the shading geometry defined by the normals:

- The shading normal is the normal of the triangle.

Shading the Triangle

In addition to the true geometry (e.g. constant normal) there is also the shading geometry defined by the normals:

- The shading normal is the normal of the triangle.
- The (shading) change in normal is zero.

Shading the Triangle

In addition to the true geometry (e.g. constant normal) there is also the shading geometry defined by the normals:

– The shading normal is:

$$n=(1-b_1-b_2)n_0+b_1n_1+b_2n_2$$

Shading the Triangle

In addition to the true geometry (e.g. constant normal) there is also the shading geometry defined by the normals:

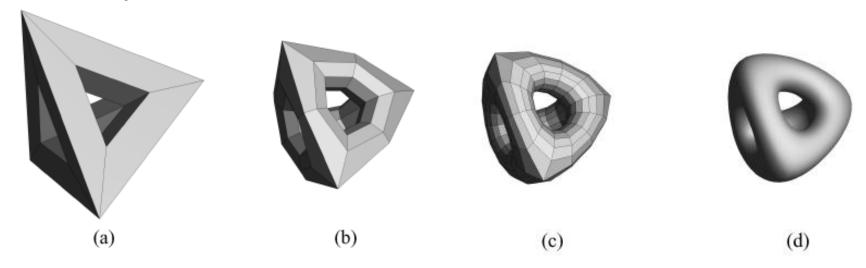
– The shading normal is:

$$n=(1-b_1-b_2)n_0+b_1n_1+b_2n_2$$

 The (shading) change in normal can be obtained by fitting a linear interpolant to the vertex normals and taking the derivative.

Subdivision Surfaces

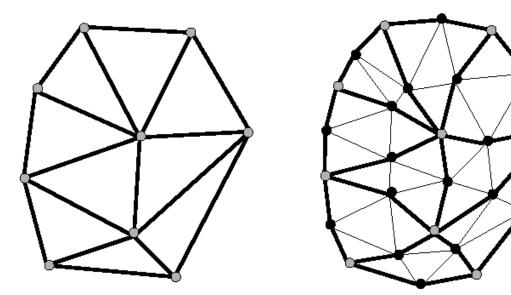
- Coarse mesh & subdivision rule
 - Define smooth surface as limit of sequence of refinements



Zorin & Schroeder SIGGRAPH 99 Course Notes

Key Questions

- How to subdivide the mesh?
 - Aim for properties like smoothness



Zorin & Schroeder SIGGRAPH 99 Course Notes

General Subdivision Scheme

How to subdivide the mesh?

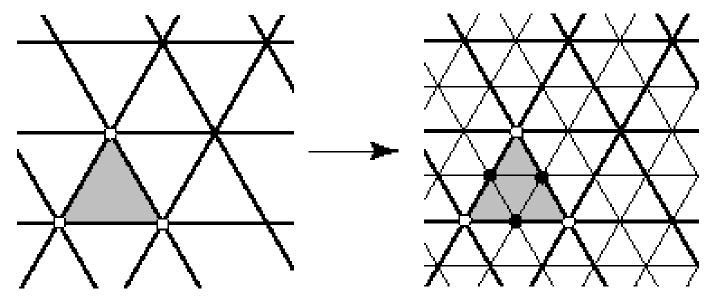
Two parts:

- Refinement:
 - Add new vertices and connect (topological)
- Smoothing:
 - Move vertex positions (geometric)

How to subdivide the mesh?

Refinement:

 Subdivide each triangle into 4 triangles by splitting each edge and connecting new vertices



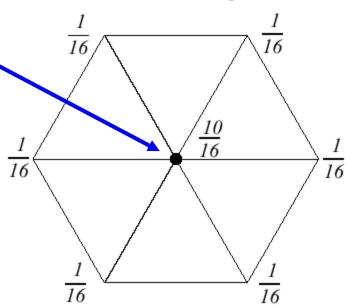
How to subdivide the mesh:

Refinement

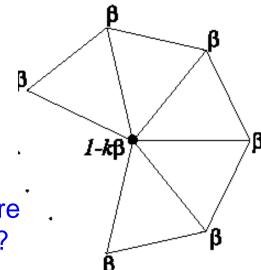
Smoothing:

 Existing Vertices: Choose new location as weighted average of original vertex and its neighbors

Existing vertex being moved from one level to the next



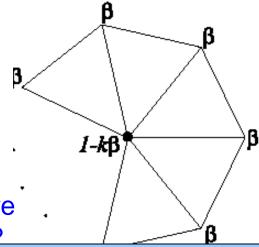
General rule for moving existing interior vertices:



What about vertices that have more Or less than 6 neighboring faces?

New_position = $(1 - k\beta)$ original_position + sum $(\beta * each_original_vertex)$

General rule for moving existing interior vertices:



What about vertices that have more Or less than 6 neighboring faces?

$0 \le \beta \le 1/k$:

New

• As β increases, the contribution from adjacent vertices plays a more important role.

tex)

Where do existing vertices move?

- How to choose β ?
 - Analyze properties of limit surface
 - Interested in continuity of surface and smoothness
 - Involves calculating eigenvalues of matrices
 - Original Loop

$$\beta = \frac{1}{k} \left(\frac{5}{8} - \left(\frac{3}{8} + \frac{1}{4} \cos \frac{2\pi}{k} \right)^2 \right)$$

Warren

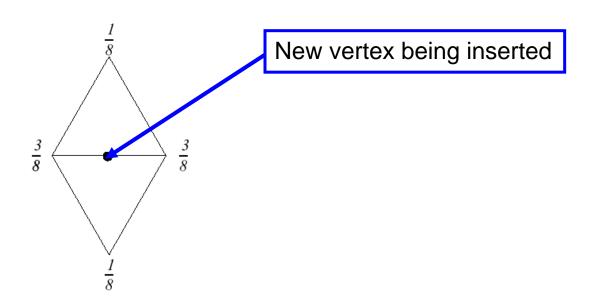
$$\beta = \begin{cases} \frac{3}{8k} \, n > 3 \\ \frac{3}{16} \, n = 3 \end{cases}$$

How to subdivide the mesh:

Refinement

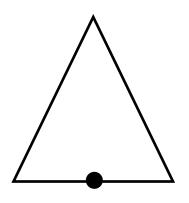
Smoothing:

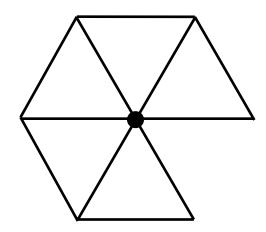
• <u>Inserted Vertices</u>: Choose location as weighted average of *original* vertices in local neighborhood



Boundary Cases?

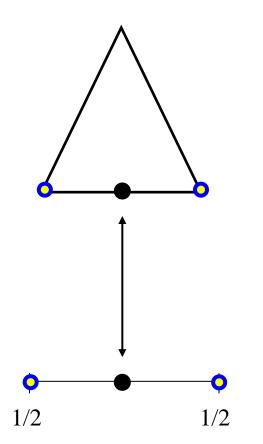
- What about extraordinary vertices and boundary edges?:
 - Existing vertex adjacent to a missing triangle
 - New vertex bordered by only one triangle

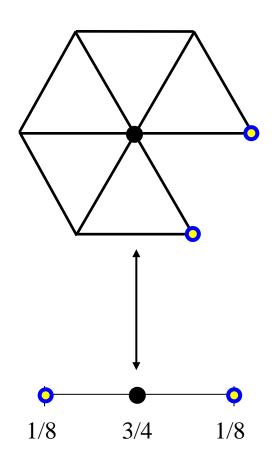


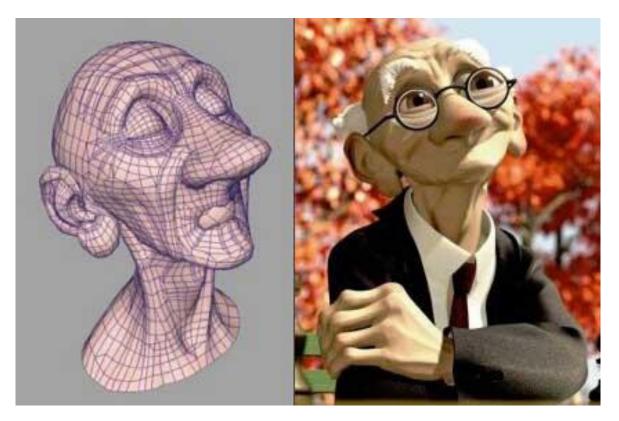


Boundary Cases?

• Rules for *extraordinary vertices* and *boundaries*:





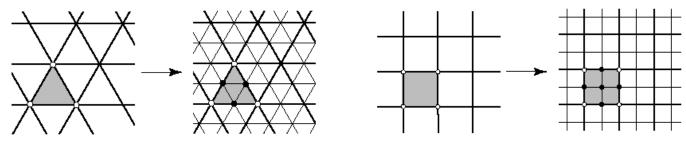


Pixar

Zorin & Schroeder SIGGRAPH 99 Course Notes

Subdivision Schemes

- There are different subdivision schemes
 - Different methods for refining topology
 - Different rules for positioning vertices



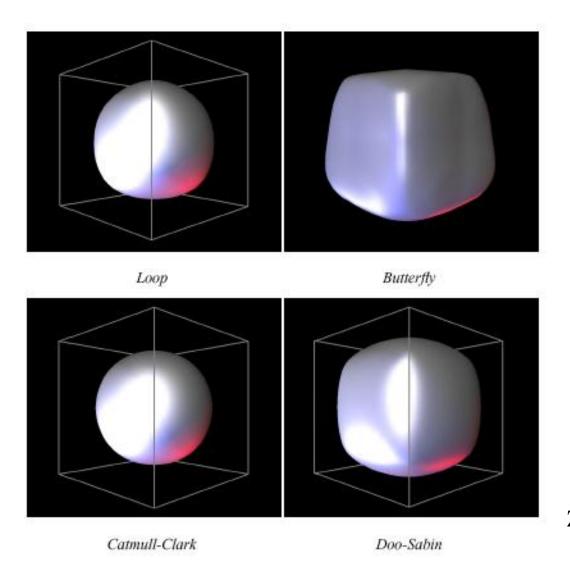
Face split for	triangles
----------------	-----------

Face split for quads

Face split		
	Triangular meshes	Quad. meshes
Approximating	Loop (C^2)	Catmull-Clark (C^2)
Interpolating	Mod. Butterfly (C^1)	Kobbelt (C1)

Vertex split		
Doo-Sabin, Midedge (C1)		
Biquartie (C^2)		

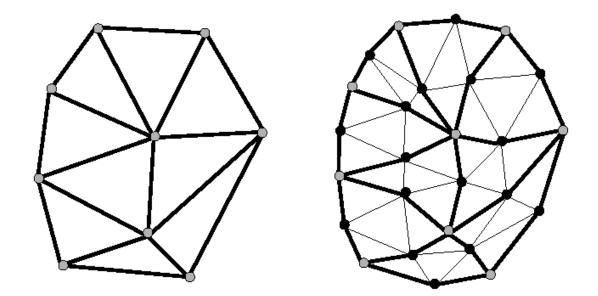
Subdivision Schemes



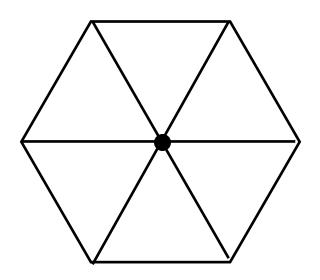
Zorin & Schroeder SIGGRAPH 99 Course Notes

Key Questions

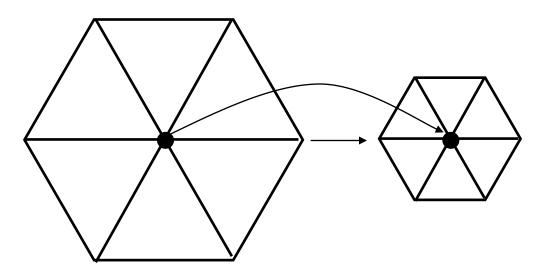
- How to refine the mesh?
 - Aim for properties like smoothness



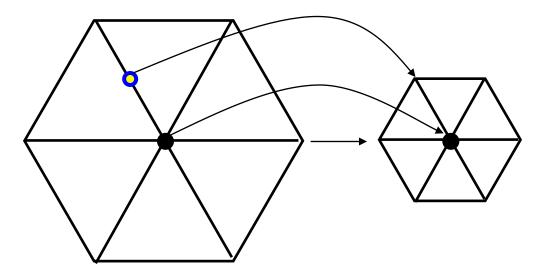
- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.



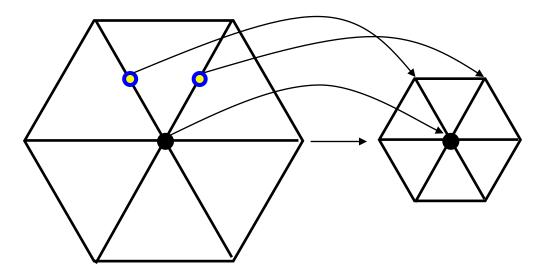
- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.



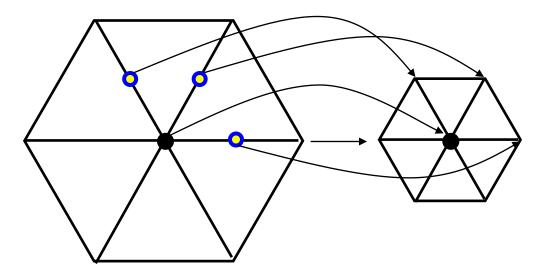
- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.



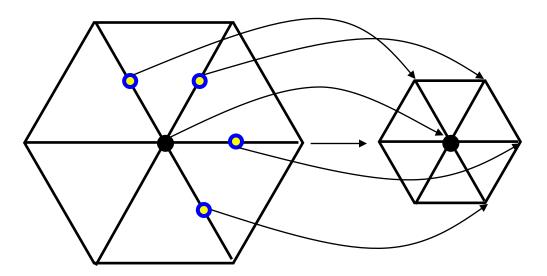
- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.



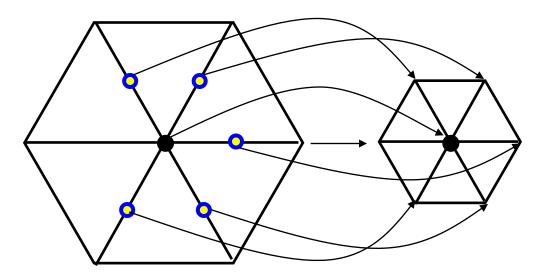
- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.



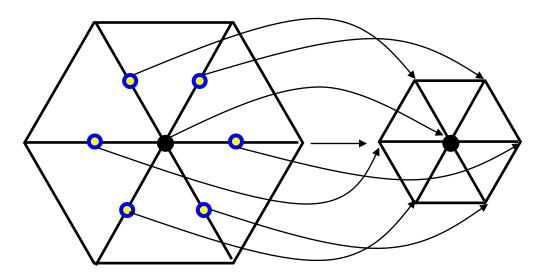
- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.



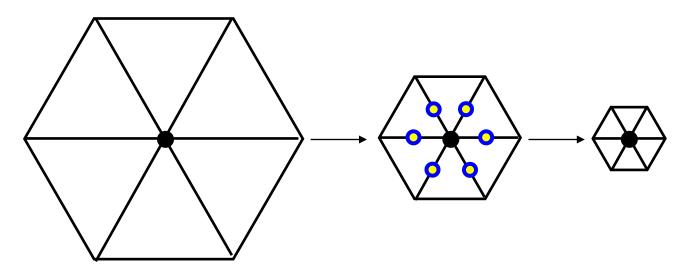
- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.



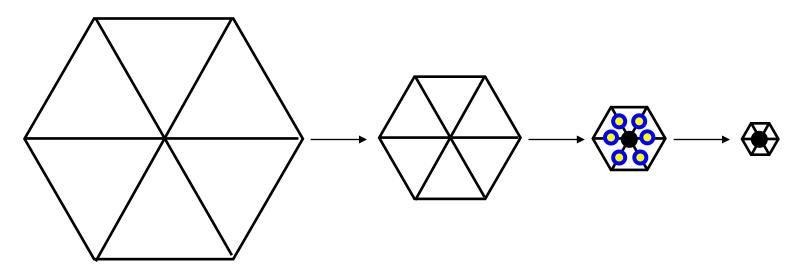
- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.



- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.

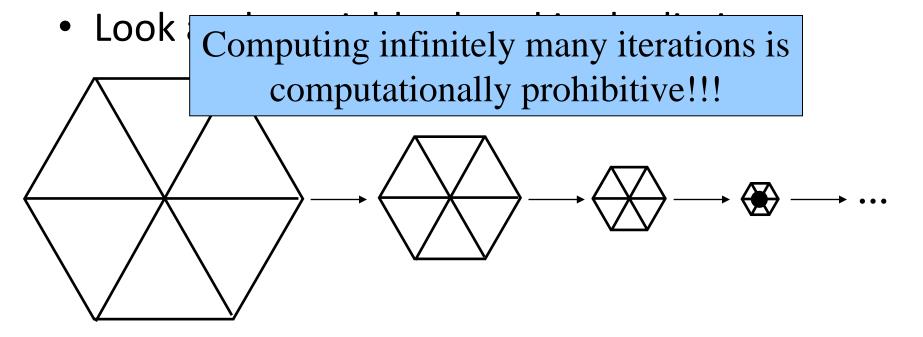


- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.

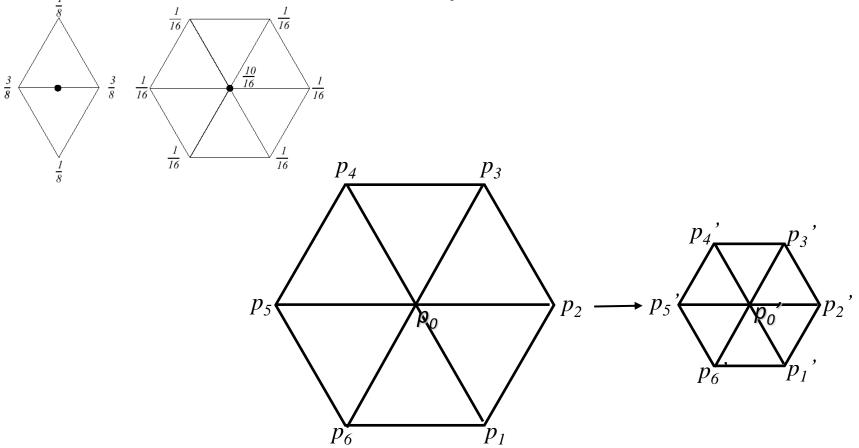


To determine the smoothness of the subdivision:

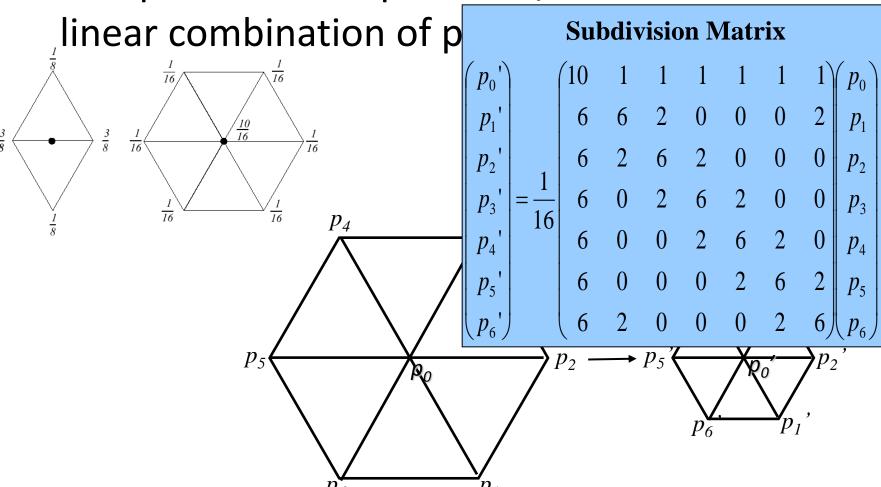
Repeatedly apply the subdivision scheme



 Compute the new positions/vertices as a linear combination of previous ones.



Compute the new positions/vertices as a



- Compute the new positions/vertices as a linear combination of previous ones.
- To find the limit position of p_0 , repeatedly apply the subdivision matrix.

- Compute the new positions/vertices as a linear combination of previous ones.
- To find the limit position of p_0 , repeatedly apply the subdivision matrix.
- Use eigen-value decomposition to compute the nth power of the matrix efficiently.

$$\begin{bmatrix}
\rho_0^{(n)} \\
\rho_1^{(n)} \\
\rho_2^{(n)} \\
\rho_3^{(n)} \\
\rho_4^{(n)} \\
\rho_5^{(n)} \\
\rho_6^{(n)}
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
2 & 2 & 6 & 0 & 0 & 0 & 6 \\
2 & 6 & 2 & 6 & 0 & 0 & 0 \\
2 & 0 & 6 & 2 & 6 & 0 & 0 \\
2 & 0 & 0 & 6 & 2 & 6 & 0 \\
2 & 0 & 0 & 0 & 6 & 2 & 6 \\
2 & 6 & 0 & 0 & 0 & 6 & 2
\end{bmatrix}$$

 p_2

 p_3

 p_4

 p_{5}

- Compute the new positions/vertices as a linear combination of previous ones.
- To find the limit position of p_0 , repeatedly apply the subdivision matrix.
- Use eigen-value $(P_0^{(n)}) [(10 \ 1 \ 1 \ 1 \ 1 \ 1)]^n (P_0$

If, after a change of basis we have $M=A^{-1}DA$, where D is a diagonal matrix, then:

$$M^n = A^{-1}D^nA$$
,

Since D is diagonal, raising D to the n-th power just amounts to raising each of the diagonal entries of D to the n-th power.