Physically Based Rendering
(600.657)

Geometry and Transformations
3D Point

- Specifies a location
3D Point

• Specifies a location
 – Represented by three coordinates
 – Infinitely small

```cpp
class Point3D {
    public:
        Coordinate x;
        Coordinate y;
        Coordinate z;
};
```
3D Vector

• Specifies a direction and a magnitude
3D Vector

- Specifies a direction and a magnitude
 - Represented by three coordinates
 - Magnitude \(||V|| = \sqrt{dx \cdot dx + dy \cdot dy + dz \cdot dz}\)
 - Has no location

```cpp
class Vector3D
{
    public:
        Coordinate dx;
        Coordinate dy;
        Coordinate dz;
};
```
3D Vector

• Specifies a direction and a magnitude
 – Represented by three coordinates
 – Magnitude $||V|| = \sqrt{dx \ dx + dy \ dy + dz \ dz}$
 – Has no location

```cpp
class Vector3D {
public:
  Coordinate dx;
  Coordinate dy;
  Coordinate dz;
};
```

• Dot product of two 3D vectors
 – $V_1 \cdot V_2 = dx_1 dx_2 + dy_1 dy_2 + dz_1 dz_2$
 – $V_1 \cdot V_2 = ||V_1|| \ ||V_2|| \ \cos(\Theta)$
3D Vector

• Specifies a direction and a magnitude
 – Represented by three coordinates
 – Magnitude $|V| = \sqrt{dx \cdot dx + dy \cdot dy + dz \cdot dz}$
 – Has no location

```cpp
class Vector3D {
    public:
        Coordinate dx;
        Coordinate dy;
        Coordinate dz;
};
```

• Cross product of two 3D vectors
 – $V_1 \times V_2 = $ Vector normal to plane V_1, V_2
 – $|V_1 \times V_2| = |V_1| \cdot |V_2| \cdot \sin(\Theta)$
Cross Product: Review

• Let $U = V \times W$:

 - $U_x = V_y W_z - V_z W_y$

 - $U_y = V_z W_x - V_x W_z$

 - $U_z = V_x W_y - V_y W_x$

• $V \times W = -W \times V$ (remember “right-hand” rule)

• We can do similar derivations to show:

 - $V_1 \times V_2 = ||V_1|| \cdot ||V_2|| \cdot \sin(\Theta) n$, where n is unit vector normal to V_1 and V_2

 - $||V_1 \times V_1|| = 0$
3D Normal

- Specifies a differential patch by the area and perpendicular direction.
3D Ray

• Line segment with one endpoint at infinity
 – Parametric representation:
 • \(P = P_1 + t \, V, \quad (0 \leq t < \infty) \)

```cpp
class Ray3D {
public:
    Point3D P1;
    Vector3D V;
};
```
Simple 2D Transformations

Translation

\[p' = T + p \]

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} =
\begin{bmatrix}
 d_x \\
 d_y
\end{bmatrix} +
\begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]
Simple 2D Transformations

Translation

\[p' = T + p \]

\[
\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} d_x \\ d_y \end{bmatrix} + \begin{bmatrix} x \\ y \end{bmatrix}
\]
Simple 2D Transformations

Scale

\[p' = S \cdot p \]

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix}
=
\begin{bmatrix}
 s_x & 0 \\
 0 & s_y
\end{bmatrix}
\cdot
\begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]
Simple 2D Transformation

Rotation

\[p' = R \cdot p \]

\[
\begin{bmatrix}
x' \\
y'
\end{bmatrix} =
\begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix}
\cdot
\begin{bmatrix}
x \\
y
\end{bmatrix}
\]
Matrix Representation

• Represent 2D transformation by a matrix

\[
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
\]

• Multiply matrix by column vector

\(\equiv \) apply transformation to point

\[
\begin{bmatrix}
x' \\
y'
\end{bmatrix} = \begin{bmatrix}
a & b \\
c & d
\end{bmatrix} \begin{bmatrix}
x \\
y
\end{bmatrix}
\]

\[
x' = ax + by
\]

\[
y' = cx + dy
\]
Matrix Representation

• Transformations combined by multiplication

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} =
\begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix}
\begin{bmatrix}
 e & f \\
 g & h
\end{bmatrix}
\begin{bmatrix}
 i & j \\
 k & l
\end{bmatrix}
\begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]

Matrices are a convenient and efficient way to represent a sequence of transformations!
2x2 Matrices

• What types of transformations can be represented with a 2x2 matrix?

Only linear 2D transformations can be represented with a 2x2 matrix
Linear Transformations

• Linear transformations are combinations of ...
 – Scale, and
 \[
 \begin{pmatrix}
 x' \\
 y'
 \end{pmatrix} = \begin{pmatrix}
 a & b \\
 c & d
 \end{pmatrix} \begin{pmatrix}
 x \\
 y
 \end{pmatrix}
 \]
 – Rotation

• Properties of linear transformations:
 – Satisfies: \(T(s_1 p_1 + s_2 p_2) = s_1 T(p_1) + s_2 T(p_2) \)
 – Origin maps to origin
 – Lines map to lines
 – Parallel lines remain parallel
 – Closed under composition
Linear Transformations

• Linear transformations are combinations of ...
 – Scale, and \[
 \begin{bmatrix}
 x' \\
 y'
 \end{bmatrix}
 =
 \begin{bmatrix}
 a & b \\
 c & d
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y
 \end{bmatrix}
\]
 – Rotation

• Properties of linear transformations:
 – Satisfies: \[
 T(s_1 \mathbf{p}_1 + s_2 \mathbf{p}_2) = s_1 T(\mathbf{p}_1) + s_2 T(\mathbf{p}_2)
 \]
 – Origin maps to origin
 – Lines map to lines
 – Parallel lines remain parallel
 – Closed under composition
 Translations do not map the origin to the origin
2D Translation

• 2D translation represented by a 3x3 matrix
 – Point represented with *homogeneous coordinates*

\[
x' = x + tx \cdot w
\]
\[
y' = y + ty \cdot w
\]
\[
w' = w
\]

\[
\begin{bmatrix}
x' \\
y' \\
w'
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & tx \\
0 & 1 & ty \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
w
\end{bmatrix}
\]
2D Translation

- 2D translation represented by a 3x3 matrix
 - Point represented with *homogeneous coordinates*

\[
\begin{bmatrix}
x' \\
y' \\
w'
\end{bmatrix} = \begin{bmatrix}
1 & 0 & tx \\
0 & 1 & ty \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
x \\
y \\
w
\end{bmatrix}
\]

\[
x' = x + tx \\
y' = y + ty
\]
Homogeneous Coordinates

• Add a 3rd coordinate to every 2D point
 – \((x, y, w)\) represents a point at location \((x/w, y/w)\)
 – \((x, y, 0)\) represents a point at infinity
 – \((0, 0, 0)\) is not allowed

Convenient coordinate system to represent many useful transformations

\((2,1,1)\) or \((4,2,2)\) or \((6,3,3)\)
Basic 2D Transformations

• Basic 2D transformations as 3x3 matrices

\[
\begin{bmatrix}
x' \\
y' \\
1
\end{bmatrix} = \begin{bmatrix}
1 & 0 & tx \\
0 & 1 & ty \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\]

Translate

\[
\begin{bmatrix}
x' \\
y' \\
1
\end{bmatrix} = \begin{bmatrix}
sx & 0 & 0 \\
0 & sy & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\]

Scale

\[
\begin{bmatrix}
x' \\
y' \\
1
\end{bmatrix} = \begin{bmatrix}
\cos \Theta & -\sin \Theta & 0 \\
\sin \Theta & \cos \Theta & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\]

Rotate
Affine Transformations

- Affine transformations are combinations of ...
 - Linear transformations, and
 - Translations

\[
\begin{bmatrix}
 x' \\
 y' \\
 w
\end{bmatrix} =
\begin{bmatrix}
 a & b & c \\
 d & e & f \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 w
\end{bmatrix}
\]

- Properties of affine transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Closed under composition
Projective Transformations

• Projective transformations ...
 – Affine transformations, and
 – Projective warps

\[
\begin{bmatrix}
 x' \\
 y' \\
 w'
\end{bmatrix} = \begin{bmatrix}
 a & b & c \\
 d & e & f \\
 g & h & i
\end{bmatrix} \begin{bmatrix}
 x \\
 y \\
 w
\end{bmatrix}
\]

• Properties of projective transformations:
 – Origin does not necessarily map to origin
 – Lines map to lines
 – Parallel lines do not necessarily remain parallel
 – Closed under composition
Matrix Composition

- Matrices are a convenient and efficient way to represent a sequence of transformations
 - General purpose representation
 - Hardware matrix multiply
 - Efficiency with pre-multiplication
 - Matrix multiplication is associative

\[p' = (T \times (R \times (S \times p))) \]
\[p' = (T \times R \times S) \times p \]
3D Transformations

• Same idea as 2D transformations
 – Homogeneous coordinates: (x,y,z,w)
 – 4x4 transformation matrices

\[
\begin{bmatrix}
x' \\
y' \\
z' \\
w'
\end{bmatrix} =
\begin{bmatrix}
a & b & c & d \\
e & f & g & h \\
i & j & k & l \\
m & n & o & p
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
w
\end{bmatrix}
\]
Basic 3D Transformations

Identity

\[
\begin{bmatrix}
 x' \\
y' \\
z' \\
w'
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
y \\
z \\
w
\end{bmatrix}
\]

Scale

\[
\begin{bmatrix}
 x' \\
y' \\
z' \\
w'
\end{bmatrix} =
\begin{bmatrix}
 s_x & 0 & 0 & 0 \\
 0 & s_y & 0 & 0 \\
 0 & 0 & s_z & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
y \\
z \\
w
\end{bmatrix}
\]

Translation

\[
\begin{bmatrix}
 x' \\
y' \\
z' \\
w'
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 & 0 & t_x \\
 0 & 1 & 0 & t_y \\
 0 & 0 & 1 & t_z \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
y \\
z \\
w
\end{bmatrix}
\]
Basic 3D Transformations

Pitch-Roll-Yaw Convention:

- Any rotation can be expressed as the combination of a rotation about the x-, the y-, and the z-axis.

Rotate around Z axis:

\[
\begin{bmatrix}
x' \\
y' \\
z' \\
w'
\end{bmatrix} =
\begin{bmatrix}
\cos \Theta & -\sin \Theta & 0 & 0 \\
\sin \Theta & \cos \Theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
w
\end{bmatrix}
\]

Rotate around Y axis:

\[
\begin{bmatrix}
x' \\
y' \\
z' \\
w'
\end{bmatrix} =
\begin{bmatrix}
\cos \Theta & 0 & \sin \Theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \Theta & 0 & \cos \Theta & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
w
\end{bmatrix}
\]

Rotate around X axis:

\[
\begin{bmatrix}
x' \\
y' \\
z' \\
w'
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & \cos \Theta & -\sin \Theta & 0 \\
0 & \sin \Theta & \cos \Theta & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
w
\end{bmatrix}
\]
Homogenous Coordinates

In 3D we can represent points by the 4-tuple:

\[(x, y, z, w)\]

under the relationship that the position is unchanged by scale:

\[(x, y, z, w) = (\alpha x, \alpha y, \alpha z, \alpha w)\]

for all non-zero values \(\alpha\).
Homogenous Coordinates

Two cases:
1. $w \neq 0$: The 4-tuple represents a point
 \[(x, y, z, w) = (x/w, y/w, z/w, 1) \]
2. $w = 0$: The 4-tuple represents a (unit) vector
 \[(x, y, z, w) = (x, y, z, 0) / \sqrt{x^2 + y^2 + z^2} \]
Applying a Transformation

- Position
- Direction
- Normal

\[
\begin{bmatrix}
a & b & c & t_x \\
d & e & f & t_y \\
g & h & i & t_z \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & t_x \\
0 & 1 & 0 & t_y \\
0 & 0 & 1 & t_z \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
a & b & c & 0 \\
d & e & f & 0 \\
g & h & i & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
Applying a Transformation

• Position
 – Apply the full affine transformation:

\[
p' = M(p) = (M_T \times M_L)(p) = M(p_x, p_y, p_z, 1)
\]

\[
\begin{bmatrix}
 a & b & c & tx \\
 d & e & f & ty \\
 g & h & i & tz \\
 0 & 0 & 0 & 1
\end{bmatrix} \times
\begin{bmatrix}
 1 & 0 & 0 & tx \\
 0 & 1 & 0 & ty \\
 0 & 0 & 1 & tz \\
 0 & 0 & 0 & 1
\end{bmatrix} = \begin{bmatrix}
 a & b & c & 0 \\
 d & e & f & 0 \\
 g & h & i & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]

Affine Translate Linear

\[M\] \[M_T\] \[M_L\]
Applying a Transformation

• Direction
 – Apply the linear component of the transformation:
 \[p' = M_L(p) = M(p_x, p_y, p_z, 0) \]

\[
\begin{bmatrix}
 a & b & c & tx \\
 d & e & f & ty \\
 g & h & i & tz \\
 0 & 0 & 0 & 1
\end{bmatrix}
= \begin{bmatrix}
 1 & 0 & 0 & tx \\
 0 & 1 & 0 & ty \\
 0 & 0 & 1 & tz \\
 0 & 0 & 0 & 1
\end{bmatrix}
\times
\begin{bmatrix}
 a & b & c & 0 \\
 d & e & f & 0 \\
 g & h & i & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]
Applying a Transformation

• Direction

 – Apply the linear component of the transformation:

 \[p' = M_L(p) = M(p_x, p_y, p_z, 0) \]

 A direction vector \(\mathbf{v} \) is defined as the difference between two positional vectors \(p \) and \(q \): \(\mathbf{v} = p - q \).
Applying a Transformation

• Direction
 – Apply the linear component of the transformation:

\[p' = M_L(p) = M(p_x, p_y, p_z, 0) \]

A direction vector \(v \) is defined as the difference between two positional vectors \(p \) and \(q \): \(v = p - q \).

Applying the transformation \(M \), we compute the transformed direction as the distance between the transformed positions: \(v' = M(p) - M(q) \).
Applying a Transformation

• Direction

 – Apply the linear component of the transformation:

 \[p' = M_L(p) = M(p_x, p_y, p_z, 0) \]

A direction vector \(v \) is defined as the difference between two positional vectors \(p \) and \(q \): \(v = p - q \).

Applying the transformation \(M \), we compute the transformed direction as the distance between the transformed positions: \(v' = M(p) - M(q) \).

The translation terms cancel out!
Applying a Transformation

- Normal
 \(p' = ? \)

\[
\begin{bmatrix}
 a & b & c & tx \\
 d & e & f & ty \\
 g & h & i & tz \\
 0 & 0 & 0 & 1
\end{bmatrix}
= \begin{bmatrix}
 1 & 0 & 0 & tx \\
 0 & 1 & 0 & ty \\
 0 & 0 & 1 & tz \\
 0 & 0 & 0 & 1
\end{bmatrix}
\times
\begin{bmatrix}
 a & b & c & 0 \\
 d & e & f & 0 \\
 g & h & i & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]

Affine: \(M \)
Translate: \(M_T \)
Linear: \(M_L \)
Normal Transformation

2D Example:

\[
\begin{bmatrix}
1 & 0 & 1 \\
0 & 2 & 1 \\
0 & 0 & 1 \\
\end{bmatrix}
\times
\begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1 \\
\end{bmatrix}
\times
\begin{bmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

\[M \times M_T \times M_L\]
Normal Transformation

2D Example:

If v is a direction in 2D, and n is a vector perpendicular to v, we want the transformed n to be perpendicular to the transformed v:

$$\langle v, n \rangle = 0 \quad \Rightarrow \quad \langle M_L(v), n' \rangle = 0$$
Normal Transformation

2D Example:

\[
\begin{bmatrix}
1 & 0 & 1 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{bmatrix}
\times
\begin{bmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

Say \(v = (2,2) \)…
Normal Transformation

2D Example:

Say $\mathbf{v} = (2,2)$... then $\mathbf{n} = \left(-\sqrt{5}, \sqrt{5}\right)$
Normal Transformation

2D Example:

\[
\begin{bmatrix}
1 & 0 & 1 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{bmatrix} \times \begin{bmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

\(M = M_T \times M_L\)

Say \(\mathbf{v} = (2,2)\) ... then \(\mathbf{n} = (-\sqrt{5}, \sqrt{5})\)

Transforming, \(M_L(\mathbf{v}) = (2,4)\) ...

\[
\langle \mathbf{v}, \mathbf{n} \rangle = 0
\]
Normal Transformation

2D Example:

\[
\begin{bmatrix}
1 & 0 & 1 \\
0 & 2 & 1 \\
0 & 0 & 1 \\
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1 \\
\end{bmatrix} \times \begin{bmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

\(M \quad M_T \quad M_L\)

Say \(\mathbf{v} = (2,2)\) ... then \(\mathbf{n} = (\sqrt{5}, \sqrt{5})\)

Transforming, \(M_L(\mathbf{v}) = (2,4)\) ... and \(M_L(\mathbf{n}) = (\sqrt{5}, \sqrt{2})\)

\[\langle \mathbf{v}, \mathbf{n} \rangle = 0\]

\[\langle M_L(\mathbf{v}), M_L(\mathbf{n}) \rangle \neq 0\]
Normal Transformation

2D Example:

\[
\begin{bmatrix}
1 & 0 & 1 \\
0 & 2 & 1 \\
0 & 0 & 1 \\
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1 \\
\end{bmatrix} \times \begin{bmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

\(M = M_T \times M_L\)

Say \(\mathbf{v} = \left(\begin{array}{c} \frac{1}{2} \\ \sqrt{2} \end{array} \right)\)

Transforms \(\mathbf{v}\) as \(\mathbf{M}_L\) does not result in a vector that is perpendicular to the transformed \(\mathbf{v}\).

\[\langle \mathbf{v}, \mathbf{n} \rangle = 0\]

\[\langle \mathbf{M}_L(\mathbf{v}), \mathbf{M}_L(\mathbf{n}) \rangle \neq 0\]
Recall

Transposes:

- The transpose of a matrix M is the matrix M^t whose (i,j)-th coeff. is the (j,i)-th coeff. of M:

\[
M = \begin{bmatrix}
m_{11} & m_{21} & m_{31} \\
m_{12} & m_{22} & m_{32} \\
m_{13} & m_{23} & m_{33}
\end{bmatrix} \quad M^t = \begin{bmatrix}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33}
\end{bmatrix}
\]
Recall

Transposes:

• The transpose of a matrix M is the matrix M^t whose (i,j)-th coeff. is the (j,i)-th coeff. of M:

\[
M = \begin{bmatrix}
 m_{11} & m_{21} & m_{31} \\
 m_{12} & m_{22} & m_{32} \\
 m_{13} & m_{23} & m_{33}
\end{bmatrix}
\]

\[
M^t = \begin{bmatrix}
 m_{11} & m_{12} & m_{13} \\
 m_{21} & m_{22} & m_{23} \\
 m_{31} & m_{32} & m_{33}
\end{bmatrix}
\]

• If M and N are two matrices, then the transpose of the product is the inverted product of the transposes:

\[
(MN)^t = N^t M^t
\]
Recall

Dot-Products:

• The dot product of two vectors $\mathbf{v} = (v_x, v_y, v_z)$ and $\mathbf{w} = (w_x, w_y, w_z)$ is obtained by summing the product of the coefficients:

$$\langle \mathbf{v}, \mathbf{w} \rangle = v_x w_x + v_y w_y + v_z w_z$$
Recall

Dot-Products:

• The dot product of two vectors \(\mathbf{v} = (v_x, v_y, v_z) \) and \(\mathbf{w} = (w_x, w_y, w_z) \) is obtained by summing the product of the coefficients:

\[
\langle \mathbf{v}, \mathbf{w} \rangle = v_x w_x + v_y w_y + v_z w_z
\]

• We can also express this as a matrix product:

\[
\langle \mathbf{v}, \mathbf{w} \rangle = \mathbf{v}^T \mathbf{w} = \begin{bmatrix} v_x & v_y & v_z \end{bmatrix} \begin{bmatrix} w_x \\ w_y \\ w_z \end{bmatrix}
\]
Recall

Transposes and Dot-Products:

• If M is a matrix, the dot product of v with M applied to w is the dot product of the transpose of M applied to v with w:
Recall

Transposes and Dot-Products:

• If M is a matrix, the dot product of v with M applied to w is the dot product of the transpose of M applied to v with w:

$$\langle v, Mw \rangle = v^t (Mw)$$
Recall

Transposes and Dot-Products:

- If M is a matrix, the dot product of v with M applied to w is the dot product of the transpose of M applied to v with w:

$$\langle v, Mw \rangle = v^t(Mw) = (v^t M)w$$
Recall

Transposes and Dot-Products:

• If M is a matrix, the dot product of v with M applied to w is the dot product of the transpose of M applied to v with w:

$$\langle v, Mw \rangle = v^t (Mw)$$

$$= (v^t M)w$$

$$= (M^t v)^t w$$
Recall

Transposes and Dot-Products:

• If M is a matrix, the dot product of v with M applied to w is the dot product of the transpose of M applied to v with w:

\[
\langle v, Mw \rangle = v^t (Mw) = (v^t M)w = (M^t v)^t w = \langle M^t v, w \rangle
\]
Applying a Transformation

• If we apply the transformation M to 3D space, how does it act on normals?
Applying a Transformation

• If we apply the transformation M to 3D space, how does it act on normals?

• A normal n is defined by being perpendicular to some vector(s) v. The transformed normal n' should be perpendicular to $M(v)$:

$$\langle n, v \rangle = \langle n', Mv \rangle$$
Applying a Transformation

• If we apply the transformation M to 3D space, how does it act on normals?

• A normal n is defined by being perpendicular to some vector(s) v. The transformed normal n' should be perpendicular to $M(v)$:

\[
\langle n, v \rangle = \langle n', Mv \rangle = \langle M^t n', v \rangle
\]
Applying a Transformation

• If we apply the transformation M to 3D space, how does it act on normals?

• A normal n is defined by being perpendicular to some vector(s) v. The transformed normal n' should be perpendicular to $M(v)$:

$$
\langle n, v \rangle = \langle n', Mv \rangle = \langle M^t n', v \rangle
$$

$$
n = M^t n'
$$
Applying a Transformation

• If we apply the transformation M to 3D space, how does it act on normals?

• A normal n is defined by being perpendicular to some vector(s) v. The transformed normal n' should be perpendicular to $M(v)$:

\[
\langle n, v \rangle = \langle n', Mv \rangle = \langle M^t n', v \rangle
\]

\[n = M^t n'\]

\[n' = \left(M^t\right)^{-1} n\]
Quaternions

Quaternions are extensions of complex numbers, with 3 imaginary values instead of 1:

\[a + ib + jc + kd \]
Quaternions

Quaternions are extensions of complex numbers, with 3 imaginary values instead of 1:
\[a + ib + jc + kd \]

Like the complex numbers, we can add quaternions together by summing the individual components:

\[
\begin{align*}
(a_1 + ib_1 + jc_1 + kd_1) \\
+ (a_2 + ib_2 + jc_2 + kd_2) \\
= (a_1 + a_2) + i(b_1 + b_2) + j(c_1 + c_2) + k(d_1 + d_2)
\end{align*}
\]
Quaternions

Quaternions are extensions of complex numbers, with 3 imaginary values instead of 1:

\[a + ib + jc + kd \]

Like the imaginary component of complex numbers, squaring the components gives:

\[i^2 = j^2 = k^2 = -1 \]
Quaternions

Quaternions are extensions of complex numbers, with 3 imaginary values instead of 1:

\[a + ib + jc + kd \]

Like the imaginary component of complex numbers, squaring the components gives:

\[i^2 = j^2 = k^2 = -1 \]

However, the multiplication rules are more complex:

\[ij = k \quad ik = -j \quad jk = i \]
\[ji = -k \quad ki = j \quad kj = -i \]
Quaternions

Quaternions are extensions of complex numbers, with 3 imaginary values instead of 1:

\[a + ib + jc + kd \]

Like the imaginary component of complex numbers, squaring the components gives:

However, the multiplication rules are more complex:

\[
ij = k \quad ik = -j \quad jk = i \\
ji = -k \quad ki = j \quad kj = -i
\]

Note that multiplication of quaternions is not commutative:

The result of the multiplication depends on the order in which it was done.
Quaternions

More generally, the product of two quaternions is:

\[
(a_1 + ib_1 + jc_1 + kd_1) \times (a_2 + ib_2 + jc_2 + kd_2) = (a_1a_2 - b_1b_2 - c_1c_2 - d_1d_2) \\
+ i(a_1b_2 + a_2b_1 + c_1d_2 - c_2d_1) \\
+ j(a_1c_2 + a_2c_1 - b_1d_2 + b_2d_1) \\
+ k(a_1d_2 + a_2d_1 + b_1c_2 - b_2c_1)
\]

\[i^2 = j^2 = k^2 = -1\]

\[ij = k \quad ik = -j \quad jk = i\]

\[ji = -k \quad ki = j \quad kji = -i\]
Quaternions

As with complex numbers, we define the conjugate of a quaternion $q = a + ib + jc + kd$ as:

$$\overline{q} = a - ib - jc - kd$$
Quaternions

As with complex numbers, we define the **conjugate** of a quaternion \(q = a + ib + jc + kd \) as:

\[
\bar{q} = a - ib - jc - kd
\]

As with complex numbers, we define the **norm** of a quaternion \(q = a + ib + jc + kd \) as:

\[
\|q\| = \sqrt{a^2 + b^2 + c^2 + d^2} = \sqrt{qq}
\]
Quaternions

As with complex numbers, we define the conjugate of a quaternion $q=a+ib+jc+kd$ as:

$$\bar{q} = a - ib - jc - kd$$

As with complex numbers, we define the norm of a quaternion $q=a+ib+jc+kd$ as:

$$\|q\| = \sqrt{a^2 + b^2 + c^2 + d^2} = \sqrt{q\bar{q}}$$

As with complex numbers, the reciprocal is defined by dividing the conjugate by the square norm:

$$\frac{1}{q} = \frac{\bar{q}}{\|q\|^2}$$
Quaternions

One way to express a quaternion is as a pair consisting of the real value and the 3D vector consisting of the imaginary components:

\[q = (\alpha, w) \quad \text{with} \quad \alpha = a, \ w = (b, c, d) \]
Quaternions

One way to express a quaternion is as a pair consisting of the real value and the 3D vector consisting of the imaginary components:

\[q = (\alpha, w) \quad \text{with} \quad \alpha = a, \ w = (b, c, d) \]

The advantage of this representation is that it is easier to express quaternion multiplication:

\[q_1 q_2 = (\alpha_1, w_1)(\alpha_2, w_2) = (\alpha_1 \alpha_2 - \langle w_1, w_2 \rangle, \alpha_1 w_2 + \alpha_2 w_1 + w_1 \times w_2) \]
One way to express a quaternion is as a pair consisting of the real value and the 3D vector consisting of the imaginary components:

\[q = (\alpha, w) \quad \text{with} \quad \alpha = a, \ w = (b, c, d) \]

The advantage of this representation is that it is easier to express quaternion multiplication:

\[q_1 q_2 = (\alpha_1, w_1)(\alpha_2, w_2) \]

\[= (\alpha_1 \alpha_2 - \langle w_1, w_2 \rangle, \alpha_1 w_2 + \alpha_2 w_1 + w_1 \times w_2) \]
Quaternions

Given a 3D vector \((x,y,z)\), we can think of the vector as an imaginary quaternion:

\[v = ix + jy + kz \]
Quaternions

Given a 3D vector \((x, y, z)\), we can think of the vector as an imaginary quaternion:

\[v = ix + jy + kz \]

Then multiplying \(v\) by a quaternion \(q\) on the left and its conjugate on the right gives:

\[q \cdot v \cdot \overline{q} = (0, w) \]
Quaternions

Given a 3D vector \((x,y,z)\), we can think of the vector as an imaginary quaternion:

\[v = ix + jy + kz \]

Then multiplying \(v\) by a quaternion \(q\) on the left and its conjugate on the right gives:

\[q \cdot v \cdot q^{-1} = (0, w) \]

The mapping is linear in \(v\), and preserves lengths when \(q\) is a unit quaternion.

This means that unit quaternions correspond to rotations in 3D.
Quaternions and Rotations

If \(q = a + ib + jc + kd \) is a unit quaternion (\(||q|| = 1 \)), \(q \) corresponds to a rotation:

\[
R(q) = \begin{pmatrix}
1 - 2c^2 - 2d^2 & 2bc - 2ad & 2bd + 2ac \\
2bc + 2ad & 1 - 2b^2 - 2d^2 & 2cd - 2ab \\
2bd - 2ac & 2cd + 2ab & 1 - 2b^2 - 2c^2
\end{pmatrix}
\]

Note that because all of the terms are quadratic, the rotation associated with \(q \) is the same as the rotation associated with \(-q\).
Quaternions and Rotations

If \(q = a + ib + jc + kd \) is a unit quaternion (\(||q|| = 1 \)), \(q \) corresponds to a rotation:

\[
R(q) = \begin{pmatrix}
1 - 2c^2 - 2d^2 & 2bc - 2ad & 2bd + 2ac \\
2bc + 2ad & 1 - 2b^2 - 2d^2 & 2cd - 2ab \\
2bd - 2ac & 2cd + 2ab & 1 - 2b^2 - 2c^2
\end{pmatrix}
\]

Since \(q \) is a unit quaternion, we can write \(q \) as:

\[
q = (\cos(\theta/2), \sin(\theta/2)w) \quad \|w\| = 1
\]
Quaternions and Rotations

If \(q = a + ib + jc + kd \) is a unit quaternion (\(|q| = 1\)), \(q \) corresponds to a rotation:

\[
R(q) = \begin{pmatrix}
1 - 2c^2 - 2d^2 & 2bc - 2ad & 2bd + 2ac \\
2bc + 2ad & 1 - 2b^2 - 2d^2 & 2cd - 2ab \\
2bd - 2ac & 2cd + 2ab & 1 - 2b^2 - 2c^2
\end{pmatrix}
\]

Since \(q \) is a unit quaternion, we can write \(q \) as:

\[
q = (\cos(\theta/2), \sin(\theta/2)w)
\]

\(|w| = 1\)

It turns out that \(q \) corresponds to the rotation:

– Whose axis of rotation is \(w \), and
– Whose angle of rotation is \(\theta \).
Quaternions and Rotations

\[
R(q) = \begin{pmatrix}
1-2c^2-2d^2 & 2bc-2ad & 2bd+2ac \\
2bc+2ad & 1-2b^2-2d^2 & 2cd-2ab \\
2bd-2ac & 2cd+2ab & 1-2b^2-2c^2
\end{pmatrix}
\]

Since \(R(q) \) preserves distances, shortest paths between rotations can be obtained by computing shortest paths between unit quaternions.
Quaternions and Rotations

\[
R(q) = \begin{pmatrix}
1 - 2c^2 - 2d^2 & 2bc - 2ad & 2bd + 2ac \\
2bc + 2ad & 1 - 2b^2 - 2d^2 & 2cd - 2ab \\
2bd - 2ac & 2cd + 2ab & 1 - 2b^2 - 2c^2
\end{pmatrix}
\]

Since \(R(q)\) preserves distances, shortest paths between rotations can be obtained by computing shortest paths between unit quaternions.

But shortest paths between two points on a sphere are just a great arcs (SLERP).