
Differential Geometry:
Delaunay Triangulations and the

Laplace-Beltrami Operator

[A Discrete Laplace-Beltrami Operator for Simplicial Surfaces, Bobenko and Springborn, 2006]

[An Algorithm for the Construction of Intrinsic Delaunay Triangulations
with Applications to Digital Geometry Processing, Fisher et al., 2007]



Harmonics Maps

Recall:

Given a surface S with a (connected) boundary, 
we can define the cotangent-weight Laplacian:
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Harmonics Maps

Recall:

Given a surface S with a (connected) boundary, 
we can define the cotangent-weight Laplacian:

Given the Laplacian, we can define the Dirichlet
energy of a function defined on the vertices:
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Harmonics Maps

Recall:

Associating the boundary with a convex curve in 
2D and solving for the harmonic function that 
minimizes the Dirichlet energy, we get a map 
from the surface to a 2D domain.
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Harmonics Maps

Recall:

In the continuous case, the map is bijective so 
the map F-1 is a well-defined parameterization.
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Harmonics Maps

Recall:

In the continuous case, the map is bijective so 
the map F-1 is a well-defined parameterization.

In the discrete case, the negative weights of the 
Laplacian can cause the map to exhibit
edge-flips.
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Convex Hulls

Definition:

Given a finite set of points P={p1,…,pn}⊂Rn, the 
convex hull the set of points consisting of the 
convex combinations of points in P:
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Convex Hulls
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Given a finite set of points P={p1,…,pn}⊂Rn, the 
convex hull the set of points consisting of the 
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Planar Triangulations

Definition:

A triangulation of a finite set of points 
P={p1,…,pn} is a decomposition of the convex 
hull of P into triangles with the property that:

–The set of triangle vertices equals P

–The intersections of two triangles is either empty 
or is a common edge or vertex.
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A triangulation is said to be Delaunay if the 
interior of the triangles’ circum-circles are 
empty.
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Delaunay Triangulations

Definition:

A triangulation is said to be Delaunay if the 
interior of the triangles’ circum-circles are 
empty.



Delaunay Triangulations

Computing the Delaunay Triangulation:

• Incremental

• Divide and Conquer

• Sweepline (planar)

• Convex hulls of paraboloids



Delaunay Edges

Definition:

An interior edge e is locally Delaunay if the 
interiors of the circum-circles of the two 
triangles do not contain the triangles’ vertices.
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Delaunay Edges

Definition:

An interior edge e is locally Delaunay if the 
interiors of the circum-circles of the two 
triangles do not contain the triangles’ vertices.

Property:

An interior edge is Delaunay iff. the sum of the 
opposite angles is not greater than π.
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Delaunay Edges

Note:

If the sum of the opposite angles is greater than 
π, then flipping the edge will give a sum that is 
less than π.
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Delaunay Triangulations

Property:

A triangulation is Delaunay if and only if every 
interior edge is locally Delaunay.
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Delaunay Triangulations

Edge Flipping Algorithm:

Starting with an arbitrary triangulation, flip 
edges until each edge is locally Delaunay.

Is this algorithm guaranteed to terminate?

Termination is proved by:
–Showing that there finitely many different 

triangulations.

–Defining a global “energy” that is
reduced with each flip (e.g. sum
of squared circum-radii.)



Delaunay Triangulations

Why Should we Care:

Of all possible triangulations, the Delaunay 
triangulation maximizes the minimal angle.



Delaunay Triangulations

Why Should we Care:

Of all possible triangulations, the Delaunay 
triangulation maximizes the minimal angle.

This results in a triangulation with “well-formed” 
triangles, facilitating numerical processing over 
the triangulation.



Delaunay Triangulations

Why Should we Care:

Given two triangles sharing an edge, the 
Laplacian weight associated to the edge is:
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Delaunay Triangulations

Why Should we Care:

Given two triangles sharing an edge, the 
Laplacian weight associated to the edge is:

eα
β

( ) ( )
βα
βα

β
β

α
αβα

sinsin
sin

2
1

sin
cos

sin
cos

2
1cotcot

2
1 +

=







+=+=ew



Delaunay Triangulations

Why Should we Care:

Given two triangles sharing an edge, the 
Laplacian weight associated to the edge is:
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Delaunay Triangulations

Why Should we Care:

Given two triangles sharing an edge, the 
Laplacian weight associated to the edge is:

Thus, the cotangent weight is non-negative iff. 
the sum of the angles is less than or equal to π.
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Delaunay Triangulations

Why Should we Care:

Given two triangles sharing an edge, the 
Laplacian weight associated to the edge is:

Thus, the cotangent weight is non-negative iff. 
the sum of the angles is less than or equal to π.
That is, iff. the edge is locally Delaunay.

e
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Delaunay Triangulations

Why Should we Care:

Given two triangles sharing an edge, the 
Laplacian weight associated to the edge is:

Thus, the cotangent weight is non-negative iff. 
the sum of the angles is less than or equal to π.
That is, iff. the edge is locally Delaunay.

So the cotangent weights are ≥0
iff. the triangulation is Delaunay.
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Delaunay Triangulations
and Laplacians

Given different triangulations of the point-set 
P={p1,…,pn}⊂R2, the angles of the triangulation 
define different cotangent-Laplacian.



Delaunay Triangulations
and Laplacians

Given different triangulations of the point-set 
P={p1,…,pn}⊂R2, the angles of the triangulation 
define different cotangent-Laplacian.

So, if we have a function F={f1,…,fn} defined on 
the points, the different triangulations define 
different Dirichlet energies:
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Delaunay Triangulations
and Laplacians

Given different triangulations of the point-set 
P={p1,…,pn}⊂R2, the angles of the triangulation 
define different cotangent-Laplacian.

So, if we have a function F={f1,…,fn} defined on 
the points, the different triangulations define 
different Dirichlet energies:

Turns out that a Delaunay
triangulation always gives
the smallest energy.
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From Planar Meshes to Surfaces in 3D

When given a triangle mesh, we are given two 
distinct pieces of information:

–Surface: The points inside the triangles

–Triangulation: A decomposition of the surface



From Planar Meshes to Surfaces in 3D

Key Observation:

It is possible to triangulate the same surface in 
different  ways.



From Planar Meshes to Surfaces in 3D

Key Observation:

It is possible to triangulate the same surface in 
different  ways.

⇒ Use the original surface geometry, but do 
geometry processing with the best triangulation.



Surface Triangulations

For a planar domain, a triangulation is a 
decomposition of a domain into patches where: 

–The boundary of the patches are made up of 
straight line segments, and

–The end-points of the segments are the points
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Surface Triangulations

For a planar domain, a triangulation is a 
decomposition of a domain into patches where: 

–The boundary of the patches are made up of 
straight line segments, and

–The end-points of the segments are the points

The edges of the triangulation live on the 
surface of the mesh and go through the mesh 
vertices, but are not comprised of the old edges.

triangle mesh

geodesics
vertices



Surface Delaunay Triangulations

As in the planar case, we can define a Delaunay 
triangulation as the triangulation which satisfies 
the empty circum-circle property.



Surface Delaunay Triangulations

As in the planar case, we can define a Delaunay 
triangulation as the triangulation which satisfies 
the empty circum-circle property.

And, as with the planar case,  we can get the 
Delaunay triangulation by performing a 
sequence of intrinsic edge-flips.



Surface Delaunay Triangulations

As in the planar case, we can define a Delaunay 
triangulation as the triangulation which satisfies 
the empty circum-circle property.

And, as with the planar case,  we can get the 
Delaunay triangulation by performing a 
sequence of intrinsic edge-flips.

Note:

As before, we do this by showing that an energy 
is minimized with each flip, but it’s trickier 
because there are infinitely many triangulations.



Edge-Flipping on a Mesh

When we perform an edge-flip on a surface 
triangulation, we need to ensure that the new 
edge to still reside on the surface.

flatten flip result



Edge-Flipping on a Mesh

When we perform an edge-flip on a surface 
triangulation, we need to ensure that the new 
edge to still reside on the surface.

Note that this can result in non-regular triangles. 

flatten flip result
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a new cotangent Laplacian over the surface.



Intrinsic Laplacian

Using the Delaunay triangulation, we can define 
a new cotangent Laplacian over the surface:

• The Laplacian must have non-negative weights 
since edge-flipping ensure that α+β≤π.

e

α+β≤π

α
β



Intrinsic Laplacian

Using the Delaunay triangulation, we can define 
a new cotangent Laplacian over the surface:

• The Laplacian must have non-negative weights 
since edge-flipping ensure that α+β≤π.

• The Laplacian is intrinsic since performing the 
edge-flips to get a Delaunay triangulation only 
requires knowledge of edge-lengths.
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Intrinsic Laplacian

Using the Delaunay triangulation, we can define 
a new cotangent Laplacian over the surface:

• The Laplacian must have non-negative weights 
since edge-flipping ensure that α+β≤π.

• The Laplacian is intrinsic since performing the 
edge-flips to get a Delaunay triangulation only 
requires knowledge of edge-lengths.
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Intrinsic Laplacian

Using the Delaunay triangulation, we can define 
a new cotangent Laplacian over the surface:

• The Laplacian must have non-negative weights 
since edge-flipping ensure that α+β≤π.

• The Laplacian is intrinsic since performing the 
edge-flips to get a Delaunay triangulation only 
requires knowledge of edge-lengths.

• The triangles are well-formed.



Intrinsic Laplacian

Positive Weights:

With the extrinsic Laplacian, negative weights in 
the Laplacian would imply that harmonic 
functions could have extrema off the boundary.
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Intrinsic Laplacian

Positive Weights:

With the extrinsic Laplacian, negative weights in 
the Laplacian would imply that harmonic 
functions could have extrema off the boundary.

⇒ The derived mapping to the plane could have 
flipped triangles and is not invertible.

With the intrinsic Laplacian, all the weights are 
positive, the extrema are on the boundary, and 
there are no edge-flips, so the inverse is well-
defined and gives a parameterization.



Intrinsic Laplacian

Well-Formed Triangles:

Having triangles with good aspect ratio implies 
that the linear system defined by the cotangent 
Laplacian is better-conditioned, making it easier 
to solve.
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