Differential Geometry: Discrete Exterior Calculus

Chains

Recall:

A k-chain of a simplicial complex K is linear combination of the k-simplices in K:

$$c = \sum_{\sigma \in K^k} c(\sigma) \cdot \sigma$$

where c is a real-valued function.

The dual of a k-chain is a k-cochain which is a linear map taking a k-chain to a real value.

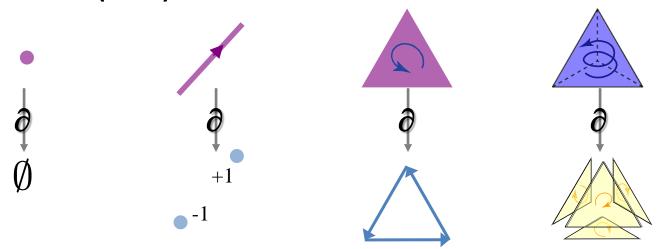
Chains and cochains related through evaluation:

- –Cochains: What we integrate
- —Chains: What we integrate over

Boundary Operator

Recall:

The boundary $\partial \sigma$ of a k-simplex σ is the signed union of all (k-1)-faces.



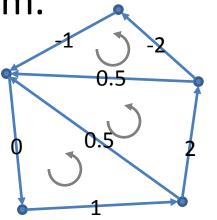
The boundary operator extends linearly to act on chains: $\sum_{n=0}^{\infty} \sum_{n=0}^{\infty} \sum_{n=0}$

$$\partial c = \partial \left(\sum_{\sigma \in K^k} c(\sigma) \cdot \sigma \right) = \sum_{\sigma \in K^k} c(\sigma) \cdot \partial \sigma$$

Discrete Exterior Derivative

Recall:

The exterior derivative $d:\Omega^k \to \Omega^{k+1}$ is the operator on cochains that is the complement of the boundary operator, defined to satisfy Stokes' Theorem.



Since the boundary of the boundary is empty:

The Laplacian

Definition:

The *Laplacian* of a function *f* is a function defined as the divergence of the gradient of *f*:

$$\Delta f = \operatorname{div}(\nabla f) = \nabla \cdot \nabla f$$

The Laplacian

Definition:

The *Laplacian* of a function *f* is a function defined as the divergence of the gradient of *f*:

$$\Delta f = \operatorname{div}(\nabla f) = \nabla \cdot \nabla f$$

Q. What do the gradient and divergence operators act on?

Definition:

Given a function $f: \mathbb{R}^n \to \mathbb{R}$, the gradient of f at a point *p* is defined as: $\nabla f(p) = \left(\frac{\partial f}{\partial x_1}, ..., \frac{\partial f}{\partial x_n}\right)$

$$\nabla f(p) = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right)$$

Definition:

Given a function $f: \mathbb{R}^n \to \mathbb{R}$, the gradient of f at a point *p* is defined as: $\nabla f(p) = \left(\frac{\partial f}{\partial x_1}, ..., \frac{\partial f}{\partial x_n}\right)$

$$\nabla f(p) = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right)$$

Given a direction vector v, we have:

$$f(p+v) \approx f(p) + v_1 \frac{\partial f}{\partial x_1} + \dots + v_1 \frac{\partial f}{\partial x_1}$$
$$= f(p) + \langle v, \nabla f(p) \rangle$$

Definition:

Given a function $f: \mathbb{R}^n \to \mathbb{R}$, the gradient of f at a point *p* is defined as: $\nabla f(p) = \left(\frac{\partial f}{\partial x_1}, ..., \frac{\partial f}{\partial x_n}\right)$

$$\nabla f(p) = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right)$$

Given a direction vector v, we have:

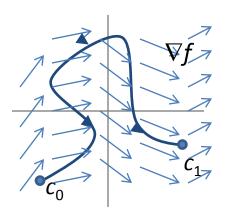
$$f(p+v) \approx f(p) + \langle v, \nabla f(p) \rangle$$

The gradient is an operator (not really a vector) telling us how moving in direction v will affect the value of the function.

Stokes' Theorem:

Given an oriented curve $c \subset \mathbb{R}^n$ with endpoints c_0 and c_1 , integrating the gradient of a function over the curve, we get the difference between the values of the function at the endpoints:

$$\int_{c} \nabla f(p) = f(c_1) - f(c_0)$$



Stokes' Theorem:

Given an oriented curve $c \subset \mathbb{R}^n$ with endpoints c_0 and c_1 , integrating the gradient of a function over the curve, we get the difference between the values of the function at the endpoints:

$$\int \nabla f(p) = f(c_1) - f(c_0)$$

The gradient satisfies Stokes' Theorem and takes something we evaluate at points to something we evaluate over curves.

Stokes' Theorem:

Given an oriented curve $c \subset \mathbb{R}^n$ with endpoints c_0 and c_1 , integrating the gradient of a function over the curve, we get the difference between the values of the function at the endpoints:

$$\int \nabla f(p) = f(c_1) - f(c_0)$$

The gradient satisfies Stokes' Theorem

and tak
The gradient operator is the exterior
points t derivative taking 0-forms to 1-forms:

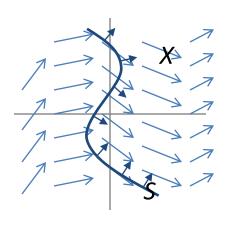
over cu
$$\nabla = d : \Omega^0(\mathbb{R}^n) \to \Omega^1(\mathbb{R}^n)$$

Definition:

Given a vector-field $X: \mathbb{R}^n \to \mathbb{R}^n$, representing a flow, the *flux* of the vector field through a patch of hyper-surface S is the "amount" of flow that passes through the surface:

$$\operatorname{Flux}_{S}(f) = \iint_{S} \langle X, n \rangle dS$$

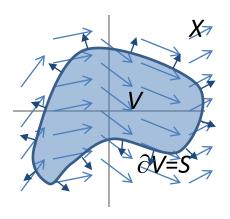
where *n* is the surface normal.



Stokes' Theorem:

Given a volume $V \subset \mathbb{R}^n$ with boundary $\partial V = S$, integrating the divergence of a function over the volume, we get the flux across the boundary:

$$\iiint\limits_{V} \nabla \cdot X = \iint\limits_{S} \langle X, n \rangle dS$$



Stokes' Theorem:

Given a volume $V \subset \mathbb{R}^n$ with boundary $\partial V = S$, integrating the divergence of a function over the volume, we get the flux across the boundary:

$$\iiint\limits_{V} \nabla \cdot X = \iint\limits_{S} \langle X, n \rangle dS$$

The divergence satisfies Stokes' Theorem and takes something we evaluate over hyper-surfaces to something we evaluate over evaluate over volumes.

Stokes' Theorem:

Given a volume $V \subset \mathbb{R}^n$ with boundary $\partial V = S$, integrating the divergence of a function over the volume, we get the flux across the boundary:

$$\iiint\limits_{V} \nabla \cdot X = \iint\limits_{S} \langle X, n \rangle dS$$

The divergence satisfies Stokes' Theorem and takes something we evaluate over

hyper The divergence operator is the exterior evaluative taking (*n*-1)-forms to *n*-forms:

$$\nabla \cdot = d : \Omega^{n-1}(\mathbf{R}^n) \to \Omega^n(\mathbf{R}^n)$$

The Laplacian

$$\Delta f = \operatorname{div}(\nabla f) = \nabla \cdot \nabla f$$

- Q. What do the gradient and divergence operators act on?
- A. The gradient and divergence operators are exterior derivatives that act on 0-forms and (*n*-1) forms respectively:
 - Gradient $\nabla: \Omega^0(\mathbf{R}^n) \to \Omega^1(\mathbf{R}^n)$
 - Divergence $\nabla : \Omega^{n-1}(\mathbf{R}^n) \to \Omega^n(\mathbf{R}^n)$

The Laplacian

$$\Delta f = \operatorname{div}(\nabla f) = \nabla \cdot \nabla f$$

- Gradient $\nabla:\Omega^0(\mathbf{R}^n)\to\Omega^1(\mathbf{R}^n)$
- Divergence $\nabla : \Omega^{n-1}(\mathbf{R}^n) \to \Omega^n(\mathbf{R}^n)$

<u>Problem</u>: The Laplacian is supposed to take functions (0-forms) to functions, but the divergence *doesn't* take 1-forms as input and it *doesn't* return 0-forms as output!!!

Observation:

In an n-dimensional inner-product space, specifying a k-dimensional subspace is the same as specifying an (n-k)-dimensional subspace.

Observation:

In an n-dimensional inner-product space, specifying a k-dimensional subspace is the same as specifying an (n-k)-dimensional subspace.

Moreover, if the space is oriented, specifying a k-dimensional <u>oriented</u> subspace is the same as specifying an (n-k)-dimensional <u>oriented</u> subspace.

If we are given a k-dimensional subspace spanned by vectors $\{v_1,...,v_k\}$, we can always find vectors $\{v_{k+1},...,v_n\}$ such that the vectors $\{v_1,...,v_n\}$ are a basis for the whole space and:

$$\langle v_i, v_j \rangle = 0$$

for all $1 \le i \le k$ and all $k+1 \le j \le n$.

If we are given a k-dimensional subspace spanned by vectors $\{v_1,...,v_k\}$, we can always find vectors $\{v_{k+1},...,v_n\}$ such that the vectors $\{v_1,...,v_n\}$ are a basis for the whole space and:

$$\langle v_i, v_j \rangle = 0$$

for all $1 \le i \le k$ and all $k+1 \le j \le n$.

If the space has an orientation, we can order the $\{v_{k+1},...,v_n\}$ so that the vectors $\{v_1,...,v_n\}$ have positive orientation.

Example:

Consider \mathbb{R}^2 , with the standard inner product and orientation $x \wedge y$:

Example:

Consider \mathbb{R}^2 , with the standard inner product and orientation $x \wedge y$:

$$-R^{0} \rightarrow R^{2}: \varnothing \rightarrow x \wedge y$$

$$-R^{1} \rightarrow R^{1}: x \rightarrow y, \qquad y \rightarrow -x$$

$$-R^{2} \rightarrow R^{0}: x \wedge y \rightarrow \varnothing$$

Example:

Consider \mathbb{R}^3 , with the standard inner product and orientation $x \wedge y \wedge z$:

Example:

Consider \mathbb{R}^3 , with the standard inner product and orientation $x \wedge y \wedge z$:

```
-R^{0} \rightarrow R^{2}: \varnothing \rightarrow x \wedge y \wedge z
-R^{1} \rightarrow R^{2}: x \rightarrow y \wedge z, \qquad y \rightarrow -x \wedge z, \qquad z \rightarrow x \wedge y
-R^{2} \rightarrow R^{1}: x \wedge y \rightarrow z, \qquad x \wedge z \rightarrow -y, \qquad y \wedge z \rightarrow x
-R^{3} \rightarrow R^{0}: x \wedge y \wedge z \rightarrow \varnothing
```

The Laplacian

$$\Delta f = \operatorname{div}(\nabla f) = \nabla \cdot \nabla f$$

- Gradient $\nabla:\Omega^0(\mathbf{R}^n)\to\Omega^1(\mathbf{R}^n)$
- Divergence $\nabla : \Omega^{n-1}(\mathbf{R}^n) \to \Omega^n(\mathbf{R}^n)$

<u>Problem</u>: The Laplacian is supposed to take functions (0-forms) to functions, but the divergence *doesn't* take 1-forms as input and it *doesn't* return 0-forms as output!!!

The Laplacian

$$\Delta f = \operatorname{div}(\nabla f) = \nabla \cdot \nabla f$$

- Gradient $\nabla:\Omega^0(\mathbf{R}^n)\to\Omega^1(\mathbf{R}^n)$
- Divergence $\nabla : \Omega^{n-1}(\mathbf{R}^n) \to \Omega^n(\mathbf{R}^n)$

<u>Problem</u>: The Laplacian is supposed to take functions (0-forms) to functions, but the divergence *doesn't* take 1-forms as input and it *doesn't* return 0-forms as output!!!

Solution: Use the duality between k-dimensional and (n-k)-dimensional subspaces to turn 1-forms into (n-1)-forms and n-forms into 0-forms.

Locally, a k-form take k-dimensional, oriented, surface elements and return a value.

Q: The corresponding dual (*n-k*)-form should act on the (oriented) orthogonal complement, but what value should it return?

Locally, a k-form take k-dimensional, oriented, surface elements and return a value.

- Q: The corresponding dual (*n-k*)-form should act on the (oriented) orthogonal complement, but what value should it return?
- A: Informally, we think of a k-form as assigning a density per unit k-volume (the "average"). We define the corresponding (n-k)-form with the same density per unit (n-k)-volume.

Definition:

The map taking a k-form to the corresponding (n-k)-forms is called the *Hodge Star* operator:

$$*: \Omega^k(\mathbf{R}^n) \to \Omega^{n-k}(\mathbf{R}^n)$$

For *R*²:

$$- *: \Omega^{0}(\mathbf{R}^{2}) \to \Omega^{2}(\mathbf{R}^{2}): \varnothing \to x \wedge y$$

$$- *: \Omega^{1}(\mathbf{R}^{2}) \to \Omega^{1}(\mathbf{R}^{2}): x \to y, \quad y \to -x$$

$$- *: \Omega^{2}(\mathbf{R}^{2}) \to \Omega^{0}(\mathbf{R}^{2}): x \wedge y \to \varnothing$$

For *R*³:

$$- *: \Omega^{0}(\mathbf{R}^{3}) \to \Omega^{3}(\mathbf{R}^{3}): \varnothing \to x \wedge y \wedge z$$

$$- *: \Omega^{1}(\mathbf{R}^{3}) \to \Omega^{2}(\mathbf{R}^{3}): x \to y \wedge z, \quad y \to -x \wedge z, \quad z \to x \wedge y$$

$$- *: \Omega^{2}(\mathbf{R}^{3}) \to \Omega^{1}(\mathbf{R}^{3}): x \wedge y \to z, \quad x \wedge z \to -y, \quad y \wedge z \to x$$

$$- *: \Omega^{3}(\mathbf{R}^{3}) \to \Omega^{0}(\mathbf{R}^{3}): x \wedge y \wedge z \to \varnothing$$

For \mathbb{R}^2 :

$$-*:\Omega^{0}(\mathbf{R}^{2}) \to \Omega^{2}(\mathbf{R}^{2}): \varnothing \to x \wedge y$$
$$-*:\Omega^{1}(\mathbf{R}^{2}) \to \Omega^{1}(\mathbf{R}^{2}): x \to y, \quad y \to -x$$

$$-*:\Omega^{2}(\mathbf{R}^{2})\rightarrow\Omega^{0}(\mathbf{R}^{2}):x\wedge y\rightarrow\varnothing$$

For *R*³:

$$-*:\Omega^0(\mathbf{R}^3) \to \Omega^3(\mathbf{R}^3): \varnothing \to x \land y \land z$$

$$-*:\Omega^{1}(\mathbf{R}^{3})\rightarrow\Omega^{2}(\mathbf{R}^{3}):x\rightarrow y\wedge z, y\rightarrow -x\wedge z, z\rightarrow x\wedge y$$

Note that the Hodge Star operator from k-forms to (n-k)-forms and the operator from (n-k)-forms to k-forms are almost inverses:

$$*_{k} *_{n-k} = (-1)^{k(n-k)}$$

Dual Complexes

In order to be able to define a discrete Laplacian, we need to have a discrete version of the Hodge Star.

Dual Complexes

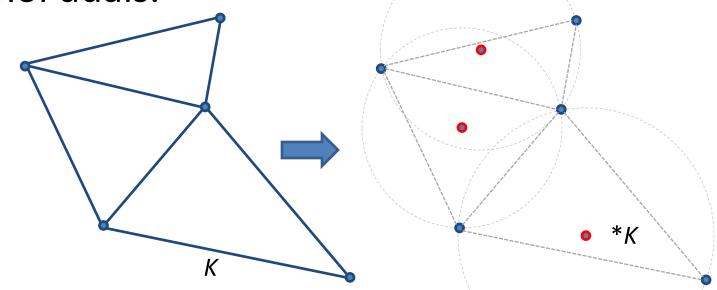
In order to be able to define a discrete Laplacian, we need to have a discrete version of the Hodge Star.

In the same way as we defined dual/orthogonal subspaces in the continuous case, we would like to define dual/orthogonal simplexes in the discrete case.

Dual Complexes

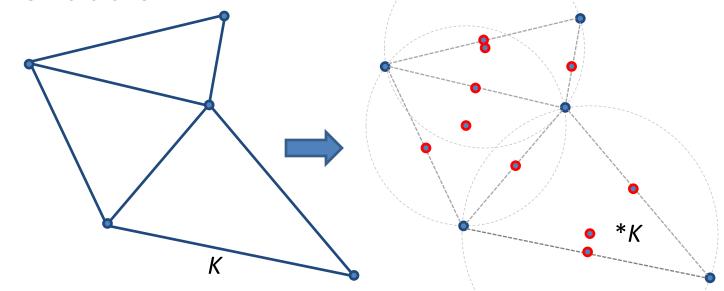
Definition:

Given a discrete manifold, we define the *Voronoi* dual complex *K to be the (non-simplicial) dual complex obtained by associating simplices with their Voronoi duals.



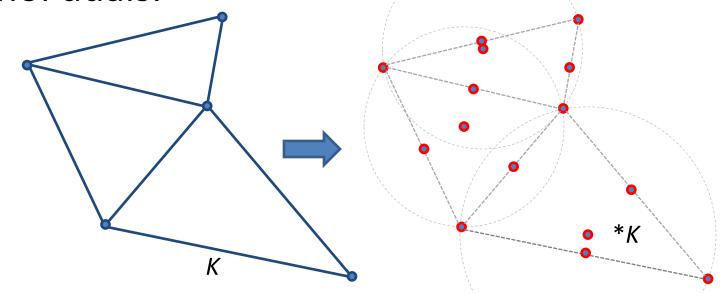
Definition:

Given a discrete manifold, we define the *Voronoi* dual complex *K to be the (non-simplicial) dual complex obtained by associating simplices with their Voronoi duals.



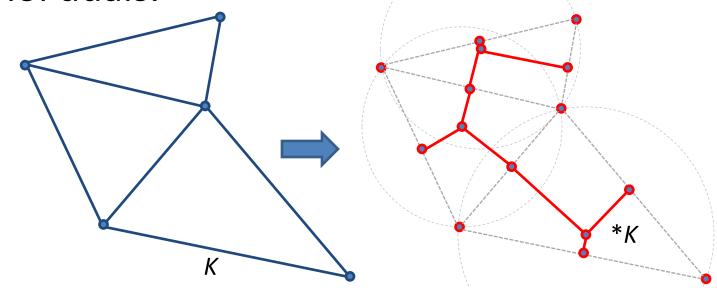
Definition:

Given a discrete manifold, we define the *Voronoi dual complex* **K* to be the (non-simplicial) dual complex obtained by associating simplices with their Voronoi duals.



Definition:

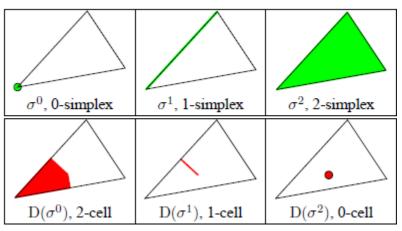
Given a discrete manifold, we define the *Voronoi dual complex* **K* to be the (non-simplicial) dual complex obtained by associating simplices with their Voronoi duals.

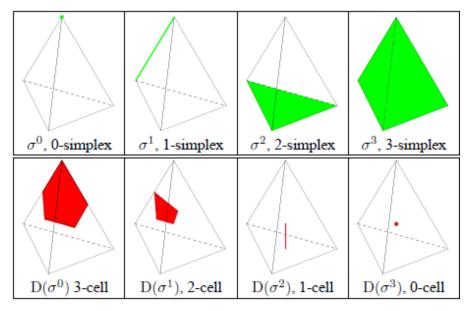


Definition:

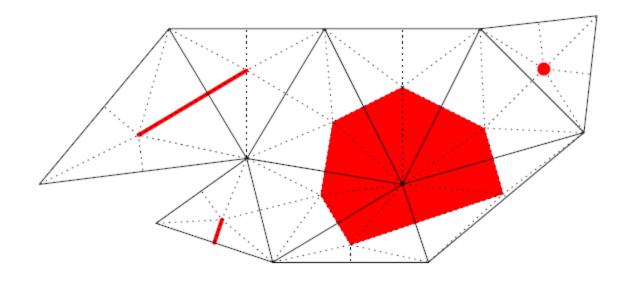
Given a discrete manifold, we define the *Voronoi* dual complex *K to be the (non-simplicial) dual complex obtained by associating simplices with

their Voronoi duals.



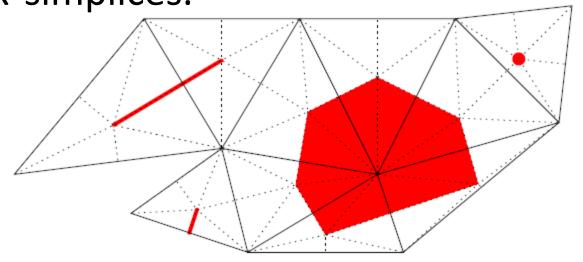


Using the dual complex, we can associate each (primal) k-simplex with a (dual) (n-k)-cell.



Using the dual complex, we can associate each (primal) k-simplex with a (dual) (n-k)-cell.

Furthermore, because we are using the Voronoi dual, the dual (n-k)-cells are orthogonal to the primal k-simplices.



Definition:

We denote by * the map that takes primal simplices to the corresponding (n-k)-cells:

$$*: \mathbf{K}^{(k)} \to *\mathbf{K}^{(n-k)}$$

Definition:

Using the association between primal simplices and dual cells, we define the discrete Hodge Star operator that takes k-cochains on the primal complex to (n-k)-cochains on the dual complex: $*: \Omega^k(K) \to \Omega^{n-k}(*K)$

Definition:

If ω is a k-cochain with value $\omega(\sigma)$ on σ , we treat ω as having a density of $\omega(\sigma)/|\sigma|$ per unit k-volume on σ (the "average" value of ω on σ).

Definition:

If ω is a k-cochain with value $\omega(\sigma)$ on σ , we treat ω as having a density of $\omega(\sigma)/|\sigma|$ per unit k-volume on σ (the "average" value of ω on σ). Thus, we define $*\omega$ so it has the same density

 $\omega(\sigma)/|\sigma|$ per unit (n-k)-volume on * σ .

Definition:

If ω is a k-cochain with value $\omega(\sigma)$ on σ , we treat ω as having a density of $\omega(\sigma)/|\sigma|$ per unit k-volume on σ (the "average" value of ω on σ).

Thus, we define $*\omega$ so it has the same density $\omega(\sigma)/|\sigma|$ per unit (n-k)-volume on $*\sigma$.

Or in other words:

$$*\omega(*\sigma) = \omega(\sigma) \frac{|*\sigma|}{|\sigma|}$$

<u>In 3D</u>:

- We have both primal and dual complexes.
- We have a boundary operator, and hence exterior derivative on both.
- We have k-cochains over both complexes.
- We have the Hodge Star operator to transition between the two.

Using this structure, we define the Laplacian:

1. Compute the gradient using the ext. derivative: primal 0-cochain \rightarrow primal 1-cochain

Using this structure, we define the Laplacian:

- 1. Compute the gradient using the ext. derivative: primal 0-cochain \rightarrow primal 1-cochain
- 2. Apply the Hodge star operator: primal 1-cochain \rightarrow dual (n-1)-cochain

Using this structure, we define the Laplacian:

- 1. Compute the gradient using the ext. derivative: primal 0-cochain \rightarrow primal 1-cochain
- 2. Apply the Hodge star operator: primal 1-cochain \rightarrow dual (n-1)-cochain
- 3. Compute the divergence using the ext. derivative: dual (n-1)-cochain \rightarrow dual n-cochain

Using this structure, we define the Laplacian:

- 1. Compute the gradient using the ext. derivative: primal 0-cochain \rightarrow primal 1-cochain
- 2. Apply the Hodge star operator: primal 1-cochain \rightarrow dual (n-1)-cochain
- 3. Compute the divergence using the ext. derivative: dual (n-1)-cochain \rightarrow dual n-cochain
- 4. Apply the Hodge star operator: dual n-cochain \rightarrow primal 0-cochain

$$\Delta := (-1)^{n(k-1)+1} * d * d$$

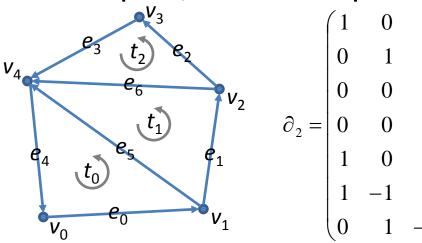
In Practice:

To work with DEC in practice, we only need to define two types of matrices:

In Practice:

To work with DEC in practice, we only need to define two types of matrices:

The boundary operators ∂:
 Specify the faces and orientations of each simplex/cell in the primal/dual complex.



$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & -1 & 0 \end{bmatrix} \qquad \partial_1 = \begin{bmatrix} -1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & -1 & 1 & 1 \end{bmatrix}$$

In Practice:

To work with DEC in practice, we only need to define two types of matrices:

The boundary operators ∂:
 Specify the faces and orientations of each simplex/cell in the primal/dual complex.

$$v_4 = \begin{pmatrix} v_3 & v_2 & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

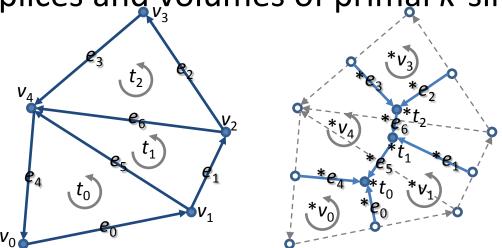
The exterior derivative is just the transpose matrix.

In Practice:

To work with DEC in practice, we only need to define two types of matrices:

2. The discrete Hodge Star operators:

Specify the ratio of between volumes of dual (n-k)-simplices and volumes of primal k-simplices.



In Practice:

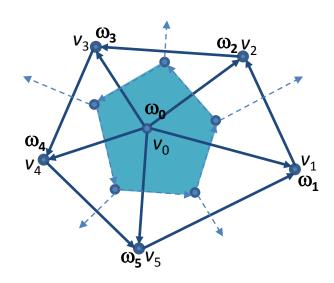
To work with DEC in practice, we only need to define two types of matrices:

The discrete Hodge Star operators:
 Specify the ratio of between volumes of dual (n-k)-simplices and volumes of primal k-simplices.

This is just a diagonal matrix whose entries are the ratios of the volumes of the dual (n-k)-cells and the volumes of the corresponding primal k-simplices.

Example (2D Laplacian):

Starting with a 0-cochain (function) ω , we evaluate the cochain to get a value ω_i at each vertex.

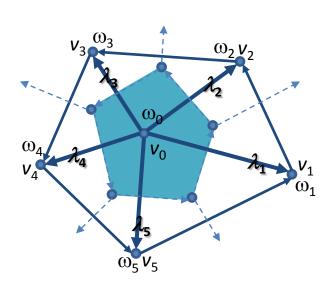


Example (2D Laplacian):

Applying the exterior derivative, we get a 1-cochain that evaluates to:

$$\lambda_i = \omega_i - \omega_0$$

on primal edges from v_0 to v_i .



Example (2D Laplacian):

Applying the Hodge Star, we get a 1-cochain that evaluates to μ_i on corresponding dual edges:

$$\mu_i = \lambda_i (l_i^*/l_i)$$

where l_i is the length of the primal edge from v_0 to v_i , and l_i^* is the length of its dual.

Example (2D Laplacian):

Applying the exterior derivative again, we get a 2-cochain that evaluates to L on the 2-cell dual to v_0 :

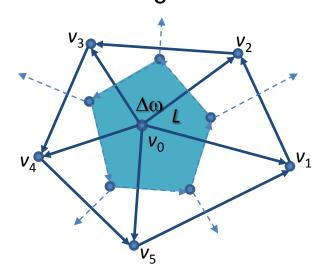
$$L = \sum_{i} \mu_{i}$$

Example (2D Laplacian):

Finally, applying the Hodge Star again, we get a 0-chain whose value at vertex v_0 is the Laplacian:

$$(\Delta\omega)(v_0) = L/A$$

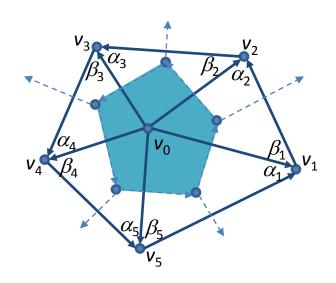
where A is the area of the 2-cell dual to v_0 .



Example (2D Laplacian):

$$\mu_i = \lambda_i (l_i^*/l_i)$$

If we denote by α_i and β_i the two angles adjacent to the primal edge from v_0 to v_i ...



Example (2D Laplacian):

$$\mu_i = \lambda_i (l_i^*/l_i)$$

If we denote by α_i and β_i the two angles adjacent to the primal edge from v_0 to v_i , the angles between the edges from v_0 to the dual vertices and the dual edges

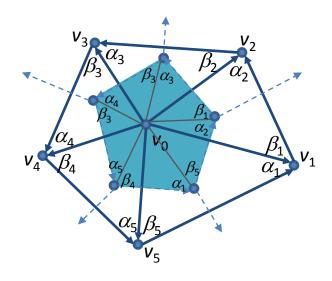
themselves become α_i and β_i .

Example (2D Laplacian):

$$\mu_i = \lambda_i (l_i^*/l_i)$$

Thus, for the edge from v_0 to v_i , we have:

$$l_i = 2\sin\beta_{i-1} = 2\sin\alpha_{i+1}$$
 $l_i^* = \cos\beta_{i-1} + \cos\alpha_{i+1}$



Example (2D Laplacian):

$$\mu_i = \lambda_i (l_i^*/l_i)$$

Thus, for the edge from v_0 to v_i , we have:

$$l_i = 2\sin\beta_{i-1} = 2\sin\alpha_{i+1}$$
 $l_i^* = \cos\beta_{i-1} + \cos\alpha_{i+1}$

and the ratio of dual to primal edge-lengths is:

$$\frac{l_{i}^{*}}{l_{i}} = \frac{1}{2} \left(\frac{\cos \beta_{i-1}}{\sin \beta_{i-1}} + \frac{\cos \alpha_{i+1}}{\sin \alpha_{i+1}} \right) = \frac{1}{2} \left(\cot \beta_{i-1} + \cot \alpha_{i+1} \right) \begin{vmatrix} v_{3} & v_{2} \\ \beta_{3} & \alpha_{3} \end{vmatrix} \begin{vmatrix} v_{2} & v_{2} \\ \beta_{3} & \alpha_{4} \end{vmatrix} \begin{vmatrix} v_{4} & \alpha_{5} \\ \beta_{4} & \alpha_{5} \end{vmatrix} \begin{vmatrix} \beta_{4} & \alpha_{5} \\ \beta_{4} & \alpha_{5} \end{vmatrix} \begin{vmatrix} \beta_{5} & \alpha_{1} \\ \alpha_{1} & \alpha_{1} \end{vmatrix} \end{vmatrix} v_{4}$$

Thanks Barry.