FFTs in Graphics and Vision

The Spherical Laplacian
Outline

• Stokes’ Theorem
• Tangent Spaces
• Gradients
• The Spherical Laplacian
• Applications
Stokes’ Theorem

Stokes’ Theorem equates the integral of the divergence of a vector field over a region to the surface integral of the vector field over the boundary:

\[\int \nabla \cdot F \, dV = \int_{\partial V} F \cdot dA \]

where \(F \cdot dA \) is defined by:

\[F \cdot dA = \langle F, \hat{n} \rangle \, |dA| \]
Stokes’ Theorem

Stokes’ Theorem equates the integral of the divergence of a vector field over a region to the surface integral of the vector field over the boundary:

\[\int_{\mathcal{V}} \nabla \cdot \mathbf{F} \, d\mathbf{V} = \oint_{\partial \mathcal{V}} \mathbf{F} \cdot d\mathbf{A} \]
Outline

• Stokes’ Theorem
• Tangent Spaces
• Gradients
• The Spherical Laplacian
• Applications
Tangent Spaces

Given a curve $C(t)=(x(t), y(t))$, the tangent line to the curve at a point $p_0=C(t_0)$ is the line passing through p_0 with direction $C'(t_0)=(x'(t_0), y'(t_0))$.
Tangent Spaces

Given a curve $C(t)=(x(t),y(t))$, the tangent line to the curve at a point $p_0=C(t_0)$ is the line passing through p_0 with direction $C'(t_0)=(x'(t_0),y'(t_0))$.

This is the line that most closely approximates the curve $C(t)$ at the point p_0.
Tangent Spaces

Often, what we want is a unit vector specifying the tangent direction.

In this case, we need to normalize:

\[T_C(t) = \frac{C'(t)}{|C'(t)|} \]
Tangent Spaces

Given a surface \(S(u,v) \) the tangent plane to the curve at a point \(p_0 = S(u_0,v_0) \) is the plane passing through \(p_0 \), parallel to the plane spanned by:

\[
\left. \frac{\partial S(u,v)}{\partial u} \right|_{(u_0,v_0)} \quad \text{and} \quad \left. \frac{\partial S(u,v)}{\partial v} \right|_{(u_0,v_0)}
\]

\(\Phi(\theta, \phi) = \cos \theta \sin \phi, \cos \phi, \sin \theta \sin \phi \)
Given a surface $S(u,v)$ the tangent plane to the curve at a point $p_0 = S(u_0,v_0)$ is the plane passing through p_0, parallel to the plane spanned by:

$$
\frac{\partial S(u,v)}{\partial u}_{(u_0,v_0)} \quad \text{and} \quad \frac{\partial S(u,v)}{\partial v}_{(u_0,v_0)}
$$

This is the plane that most closely approximates $S(u,v)$ at the point p_0.

$$
\Phi(\theta, \phi) = \cos \theta \sin \phi, \cos \phi, \sin \theta \sin \phi
$$
Tangent Spaces

In the case of the sphere, points are parameterized by the equation:

$$\Phi(\theta, \phi) = \cos \theta \sin \phi, \cos \phi, \sin \theta \sin \phi$$

and the two tangent directions are:

$$\frac{\partial \Phi}{\partial \theta} = \sin \theta \sin \phi, 0, \cos \theta \sin \phi$$

$$\frac{\partial \Phi}{\partial \phi} = \cos \theta \cos \phi, -\sin \phi, \sin \theta \cos \phi$$
Tangent Spaces

If we look at the dot-product of the two vectors:

\[
\frac{\partial \Phi}{\partial \theta} = \begin{bmatrix} \sin \theta \sin \phi, 0, \cos \theta \sin \phi \end{bmatrix}
\]

\[
\frac{\partial \Phi}{\partial \phi} = \begin{bmatrix} \cos \theta \cos \phi, -\sin \phi, \sin \theta \cos \phi \end{bmatrix}
\]

we get:

\[
\left\langle \frac{\partial \Phi}{\partial \theta}, \frac{\partial \Phi}{\partial \theta} \right\rangle = \sin^2 \theta \sin^2 \phi + \cos^2 \theta \sin^2 \phi
\]
Tangent Spaces

If we look at the dot-product of the two vectors:

\[
\frac{\partial \Phi}{\partial \theta} = \langle \sin \theta \sin \phi, 0, \cos \theta \sin \phi \rangle
\]

\[
\frac{\partial \Phi}{\partial \phi} = \langle \cos \theta \cos \phi, -\sin \phi, \sin \theta \cos \phi \rangle
\]

we get:

\[
\left\langle \frac{\partial \Phi}{\partial \theta}, \frac{\partial \Phi}{\partial \theta} \right\rangle = \langle \sin^2 \theta + \cos^2 \theta \rangle \sin^2 \phi
\]
Tangent Spaces

If we look at the dot-product of the two vectors:

\[\frac{\partial \Phi}{\partial \theta} = \begin{pmatrix} \sin \theta \sin \phi, 0, \cos \theta \sin \phi \end{pmatrix} \]

\[\frac{\partial \Phi}{\partial \phi} = \begin{pmatrix} \cos \theta \cos \phi, -\sin \phi, \sin \theta \cos \phi \end{pmatrix} \]

we get:

\[\left\langle \frac{\partial \Phi}{\partial \theta}, \frac{\partial \Phi}{\partial \theta} \right\rangle = \sin^2 \phi \]
Tangent Spaces

If we look at the dot-product of the two vectors:

\[
\frac{\partial \Phi}{\partial \theta} = \langle \sin \theta \sin \phi, 0, \cos \theta \sin \phi \rangle
\]

\[
\frac{\partial \Phi}{\partial \phi} = \langle \cos \theta \cos \phi, -\sin \phi, \sin \theta \cos \phi \rangle
\]

we get:

\[
\left\langle \frac{\partial \Phi}{\partial \theta} , \frac{\partial \Phi}{\partial \theta} \right\rangle = \sin^2 \phi
\]

\[
\left\langle \frac{\partial \Phi}{\partial \phi} , \frac{\partial \Phi}{\partial \phi} \right\rangle = \cos^2 \theta \cos^2 \phi + \sin^2 \phi + \sin^2 \theta \cos^2 \phi
\]
Tangent Spaces

If we look at the dot-product of the two vectors:

\[
\frac{\partial \Phi}{\partial \theta} = \sin \theta \sin \phi, 0, \cos \theta \sin \phi
\]

\[
\frac{\partial \Phi}{\partial \phi} = \cos \theta \cos \phi, -\sin \phi, \sin \theta \cos \phi
\]

we get:

\[
\left\langle \frac{\partial \Phi}{\partial \theta}, \frac{\partial \Phi}{\partial \theta} \right\rangle = \sin^2 \phi
\]

\[
\left\langle \frac{\partial \Phi}{\partial \phi}, \frac{\partial \Phi}{\partial \phi} \right\rangle = \cos^2 \theta + \sin^2 \theta \cos^2 \phi + \sin^2 \phi
\]
Tangent Spaces

If we look at the dot-product of the two vectors:

\[
\frac{\partial \Phi}{\partial \theta} = \sin \theta \sin \phi, 0, \cos \theta \sin \phi
\]

\[
\frac{\partial \Phi}{\partial \phi} = \cos \theta \cos \phi, -\sin \phi, \sin \theta \cos \phi
\]

we get:

\[
\begin{aligned}
\left\langle \frac{\partial \Phi}{\partial \theta}, \frac{\partial \Phi}{\partial \theta} \right\rangle &= \sin^2 \phi \\
\left\langle \frac{\partial \Phi}{\partial \phi}, \frac{\partial \Phi}{\partial \phi} \right\rangle &= \cos^2 \phi + \sin^2 \phi
\end{aligned}
\]
Tangent Spaces

If we look at the dot-product of the two vectors:

\[
\begin{align*}
\frac{\partial \Phi}{\partial \theta} &= \begin{pmatrix} \sin \theta \sin \phi, 0, \cos \theta \sin \phi \end{pmatrix} \\
\frac{\partial \Phi}{\partial \phi} &= \begin{pmatrix} \cos \theta \cos \phi, -\sin \phi, \sin \theta \cos \phi \end{pmatrix}
\end{align*}
\]

we get:

\[
\begin{align*}
\left\langle \frac{\partial \Phi}{\partial \theta}, \frac{\partial \Phi}{\partial \theta} \right\rangle &= \sin^2 \phi \\
\left\langle \frac{\partial \Phi}{\partial \phi}, \frac{\partial \Phi}{\partial \phi} \right\rangle &= 1
\end{align*}
\]
Tangent Spaces

If we look at the dot-product of the two vectors:

\[
\begin{align*}
\frac{\partial \Phi}{\partial \theta} &= \langle \sin \theta \sin \phi, 0, \cos \theta \sin \phi \rangle \\
\frac{\partial \Phi}{\partial \phi} &= \langle \cos \theta \cos \phi, -\sin \phi, \sin \theta \cos \phi \rangle
\end{align*}
\]

we get:

\[
\begin{align*}
\left\langle \frac{\partial \Phi}{\partial \theta}, \frac{\partial \Phi}{\partial \theta} \right\rangle &= \sin^2 \phi \\
\left\langle \frac{\partial \Phi}{\partial \phi}, \frac{\partial \Phi}{\partial \phi} \right\rangle &= 1 \\
\left\langle \frac{\partial \Phi}{\partial \theta}, \frac{\partial \Phi}{\partial \phi} \right\rangle &= -\sin \theta \cos \theta \sin \phi \cos \phi + \sin \theta \cos \theta \sin \phi \cos \phi
\end{align*}
\]
Tangent Spaces

If we look at the dot-product of the two vectors:

\[
\begin{align*}
\frac{\partial \Phi}{\partial \theta} &= \langle \sin \theta \sin \phi, 0, \cos \theta \sin \phi \rangle \\
\frac{\partial \Phi}{\partial \phi} &= \langle \cos \theta \cos \phi, -\sin \phi, \sin \theta \cos \phi \rangle
\end{align*}
\]

we get:

\[
\begin{align*}
\left\langle \frac{\partial \Phi}{\partial \theta}, \frac{\partial \Phi}{\partial \theta} \right\rangle &= \sin^2 \phi \\
\left\langle \frac{\partial \Phi}{\partial \phi}, \frac{\partial \Phi}{\partial \phi} \right\rangle &= 1 \\
\left\langle \frac{\partial \Phi}{\partial \theta}, \frac{\partial \Phi}{\partial \phi} \right\rangle &= 0
\end{align*}
\]
Tangent Spaces

So, the vectors:

\[\Phi_\theta(\theta, \phi) = \frac{1}{\sin \phi} \frac{\partial \Phi}{\partial \theta} \]

\[\Phi_\phi(\theta, \phi) = \frac{\partial \Phi}{\partial \phi} \]

form an orthonormal basis for the tangent plane to the sphere at the point \(\Phi(\theta, \phi) \).
Outline

• Stokes’ Theorem
• Tangent Spaces
• Gradients
• The Spherical Laplacian
• Applications
Function Gradients

The gradient of a function is a vector which tells us how the function changes as we move in different directions.
The gradient of a function is a vector which tells us how the function changes as we move in different directions.

Given a function f and given a direction v:

$$f(p + v) \approx f(p) + \langle \nabla f(p), v \rangle$$
Function Gradients

To compute the gradient, we choose two orthogonal unit vectors u and v, and we set:

$$\nabla f(p) = \frac{d}{dt} f(p + tu)u + \frac{d}{dt} f(p + tv)v$$
Curve Gradients

Given a curve $C(t)$, and given a function $f(t)$ the gradient of the function is a vector field on the curve telling us how the function changes as we move along the curve.
Curve Gradients

Example:

Let C be the curve defined by:

$$C(t) = t^2$$

and let $f(t)$ be the function on the curve defined by:

$$f(t) = t$$

What is the gradient of $f(t)$?
Curve Gradients

Example:

The gradient is not the function $\nabla_C f = 1$!

This would imply that at any point on the curve moving a unit forward would change the value by a constant amount.
Curve Gradients

Example:

The gradient is **not** the function $\nabla_C f = 1$!

As we move from $t=1$ to $t=2$, the function changes by a value of 1. Similarly, as we move from $t=10$ to $t=11$, the function changes by a value of 1.
Curve Gradients

Example:

The gradient is **not** the function $\nabla_C f = 1$!

As we move from $t=1$ to $t=2$, the function changes by a value of 1. Similarly, as we move from $t=10$ to $t=11$, the function changes by a value of 1.

But in the first case, we have moved a distance of:

\[
d_1 \approx \| C(2) - C(1) \| = \sqrt{1^2 + 3^2}
\]
Curve Gradients

Example:

The gradient is \textbf{not} the function $\nabla_C f = 1$!

As we move from $t=1$ to $t=2$, the function changes by a value of 1. Similarly, as we move from $t=10$ to $t=11$, the function changes by a value of 1.

In the second case, we have moved a distance of:

$$d_2 \approx \left\| C(11) - C(10) \right\| = \sqrt{1^2 + 21^2}$$
Curve Gradients

Example:

We need to measure the ratio of the change in f over the distance traveled:

$$\nabla_C f(t) \approx \frac{f(t + \varepsilon) - f(t)}{|C(t + \varepsilon) - C(t)|}$$

$$\nabla_C f(t) = \frac{f'(t)}{|C'(t)|}$$
Curve Gradients

Example:

We need to measure the ratio of the change in f over the distance traveled:

$$\nabla_{C}f(t) = \frac{1}{\sqrt{1+2t}}$$
Spherical Gradients

Given a function on the sphere, \(f(\theta, \phi) \), we would like to compute the gradient:

\[
\nabla f (\theta, \phi)
\]
Spherical Gradients

Given a function on the sphere, \(f(\theta, \phi) \), we would like to compute the gradient:

\[
\nabla f (\theta, \phi)
\]

We need to pick two directions in parameter space whose images on the surface of the sphere are orthogonal.
Spherical Gradients

Given a function on the sphere, \(f(\theta,\phi) \), we would like to compute the gradient:

\[
\nabla f (\theta, \phi)
\]

We need to pick two directions in parameter space whose images on the surface of the sphere are orthogonal.

The directions \(\theta \) and \(\phi \) are two such directions:
Spherical Gradients

We could try taking the partial derivatives in the θ and φ directions:

\[\nabla f(\theta, \phi) = \left(\frac{\partial f}{\partial \theta}, \frac{\partial f}{\partial \phi} \right) \]
Spherical Gradients

We could try taking the partial derivatives in the θ and ϕ directions:

$$\nabla f (\theta, \phi) = \left(\frac{\partial f}{\partial \theta}, \frac{\partial f}{\partial \phi} \right)$$

But this introduces bias!

Shifting by a constant $\Delta \theta$ will move us different distances depending on where we are on the sphere.
Spherical Gradients

How does the scale change as we change θ or ϕ by a value of ε?
Spherical Gradients

How does the scale change as we change θ or ϕ by a value of ε?

At the point $p=\Phi(\theta, \phi)$, changing the value of θ by ε, moves us a distance of εr along the circle about the y-axis, where r is the radius of the circle:
Spherical Gradients

How does the scale change as we change θ or ϕ by a value of ε?

At the point $p = \Phi(\theta, \phi)$, changing the value of θ by ε, moves us a distance of εr along the circle about the y-axis, where r is the radius of the circle.

On the sphere, the radius is defined by:

$$r(\phi) = \sin \phi$$
Spherical Gradients

How does the scale change as we change θ or ϕ by a value of ε?

At the point $p=\Phi(\theta,\phi)$, changing the value of ϕ by ε, moves us a distance of ε along a great circle, regardless of where on the sphere we are:
Spherical Gradients

Taking the scaling into account, we get:

\[
\nabla f(\theta, \phi) \approx \begin{pmatrix}
\frac{f(\theta + \epsilon, \phi) - f(\theta, \phi)}{\epsilon \sin \phi} & \frac{f(\theta, \phi + \epsilon) - f(\theta, \phi)}{\epsilon}
\end{pmatrix}
\]
Spherical Gradients

Taking the scaling into account, we get:

\[\nabla f(\theta, \phi) \approx \left(\frac{f(\theta + \epsilon, \phi) - f(\theta, \phi)}{\epsilon \sin \phi}, \frac{f(\theta, \phi + \epsilon) - f(\theta, \phi)}{\epsilon} \right) \]

\[\nabla f(\theta, \phi) = \left(\frac{1}{\sin \phi} \frac{\partial f}{\partial \theta} \right) \Phi_\theta + \left(\frac{\partial f}{\partial \phi} \right) \Phi_\phi \]
Outline

• Stokes’ Theorem
• Tangent Spaces
• Gradients
• The Spherical Laplacian
• Applications
The Spherical Laplacian

Recall:
The Laplacian operator is self-adjoint (symmetric)
⇒ There is an orthogonal basis of eigenvectors.
The Spherical Laplacian

Recall:
The Laplacian operator is self-adjoint (symmetric)
⇒ There is an orthogonal basis of eigenvectors.

The Laplacian operator commutes with rotations
⇒ If F_λ are the eigenfunctions of the Laplacian with eigenvalue λ, rotations fix F_λ.
The Spherical Laplacian

Recall:

The Laplacian operator is self-adjoint (symmetric)

⇒ There is an orthogonal basis of eigenvectors.

The Laplacian operator commutes with rotations

⇒ If F_λ are the eigenfunctions of the Laplacian with eigenvalue λ, rotations fix F_λ.

⇒ The irreducible representations are subspaces of the F_λ.
The Spherical Laplacian

All this implies that for a fixed degree l, the spherical harmonics of degree l:

$$ Y_l^k (\theta, \phi) = e^{ik\theta} P_l^k (\cos \phi) $$

($-k \leq k \leq l$) must be eigenvectors of the Laplacian with the same eigenvalue.
The Spherical Laplacian

All this implies that for a fixed degree l, the spherical harmonics of degree l:

$$Y_l^k (\theta, \phi) = e^{ik\theta} P_l^k (\cos \phi)$$

($-l \leq k \leq l$) must be eigenvectors of the Laplacian with the same eigenvalue.

1. What is the Laplacian?
2. What are the eigenvalues?
The Spherical Laplacian

How do we compute the Laplacian of a spherical function $f(\theta, \phi)$?
The Spherical Laplacian

How do we compute the Laplacian of a spherical function $f(\theta, \phi)$?

Recall:
The Laplacian of a function is the divergence of its gradient:

$$\nabla^2 f = \nabla \cdot (\nabla f)$$
The Spherical Laplacian

By Stokes’ Theorem, we can compute the integral of the Laplacian (the divergence of the gradient) over a region by computing the surface integral of the gradient field over the boundary:
The Spherical Laplacian

Consider the “square” on the sphere with endpoints \((\theta, \phi), (\theta + \varepsilon, \phi), (\theta + \varepsilon, \phi + \varepsilon)\) and \((\theta, \phi + \varepsilon)\):
The Spherical Laplacian

Consider the “square” on the sphere with end-points \((\theta, \phi), (\theta + \varepsilon, \phi), (\theta + \varepsilon, \phi + \varepsilon)\) and \((\theta, \phi + \varepsilon)\):

The integral of the Laplacian is approximately:

\[
\int_{R} \nabla^{2} f \, dR \approx \text{Area}(R) \nabla^{2} f (\theta, \phi)
\]
The Spherical Laplacian

Consider the “square” on the sphere with endpoints \((\theta, \phi), (\theta + \varepsilon, \phi), (\theta + \varepsilon, \phi + \varepsilon)\) and \((\theta, \phi + \varepsilon)\):

The integral of the Laplacian is approximately:

\[
\int_{R} \nabla^2 f \, dR \approx \text{Area}(R) \nabla^2 f (\theta, \phi)
\]

\[= \varepsilon^2 \sin \phi \nabla^2 f (\theta, \phi)\]
The Spherical Laplacian

Consider the “square” on the sphere with endpoints \((\theta, \phi), (\theta + \varepsilon, \phi), (\theta + \varepsilon, \phi + \varepsilon)\) and \((\theta, \phi + \varepsilon)\):

On the curve \(c_1\), the surface integral of the gradient is approximately:

\[
\int_{c_1} \nabla f \cdot dA \approx \text{Length } (c_1) \left\langle \nabla f, \Phi_{\phi} \right\rangle
\]
The Spherical Laplacian

Consider the “square” on the sphere with endpoints \((\theta, \phi), (\theta + \varepsilon, \phi), (\theta + \varepsilon, \phi + \varepsilon)\) and \((\theta, \phi + \varepsilon)\):

On the curve \(c_1\), the surface integral of the gradient is approximately:

\[
\int_{c_1} \nabla f \cdot dA \approx \text{Length } (c_1) \langle \nabla f, \Phi_\phi \rangle
\]

\[
= \varepsilon \sin(\phi + \varepsilon) \left\langle \left(\frac{1}{\sin \phi + \varepsilon} \frac{\partial f}{\partial \theta}, \frac{\partial f}{\partial \phi} \right), (0, 1) \right\rangle
\]
The Spherical Laplacian

Consider the “square” on the sphere with end-points \((\theta, \phi), (\theta + \varepsilon, \phi), (\theta + \varepsilon, \phi + \varepsilon)\) and \((\theta, \phi + \varepsilon)\):

On the curve \(c_1\), the surface integral of the gradient is approximately:

\[
\int_{c_1} \nabla f \cdot dA \approx \text{Length} \left(c_1 \right) \langle \nabla f, \Phi_\phi \rangle
\]

\[
= \varepsilon \sin(\phi + \varepsilon) \left\langle \left(\frac{1}{\sin \phi + \varepsilon} \frac{\partial f}{\partial \theta}, \frac{\partial f}{\partial \phi} \right), (0,1) \right\rangle
\]

\[
= \varepsilon \sin(\phi + \varepsilon) \frac{\partial f}{\partial \phi} (\theta, \phi + \varepsilon)
\]
The Spherical Laplacian

Consider the “square” on the sphere with endpoints \((\theta, \phi), (\theta + \varepsilon, \phi), (\theta + \varepsilon, \phi + \varepsilon)\) and \((\theta, \phi + \varepsilon)\):

Similarly, on the curve \(c_2\), the surface integral of the gradient is approximately:

\[
\int_{c_2} \nabla f \cdot dA \approx -\varepsilon \sin(\phi) \frac{\partial f}{\partial \phi}(\theta, \phi)
\]
The Spherical Laplacian

Consider the “square” on the sphere with endpoints \((\theta, \phi), (\theta + \varepsilon, \phi), (\theta + \varepsilon, \phi + \varepsilon)\) and \((\theta, \phi + \varepsilon)\):

On the curve \(c_3\), the surface integral of the gradient is approximately:

\[
\int_{c_3} \nabla f \cdot dA \approx \text{Length } (c_3) \left\langle \nabla f, \Phi_\theta \right\rangle
\]
The Spherical Laplacian

Consider the “square” on the sphere with end-points \((\theta, \phi), (\theta + \varepsilon, \phi), (\theta + \varepsilon, \phi + \varepsilon)\) and \((\theta, \phi + \varepsilon)\):

On the curve \(c_3\), the surface integral of the gradient is approximately:

\[
\int_{c_3} \nabla f \cdot dA \approx \text{Length} \ (c_3) \left\langle \nabla f, \Phi_{\theta} \right\rangle
\]

\[
= \varepsilon \left\langle \left(\frac{1}{\sin \phi} \frac{\partial f}{\partial \theta}, \frac{\partial f}{\partial \phi} \right) \right\rangle, (1,0)
\]
The Spherical Laplacian

Consider the “square” on the sphere with endpoints \((\theta, \phi), (\theta + \varepsilon, \phi), (\theta + \varepsilon, \phi + \varepsilon)\) and \((\theta, \phi + \varepsilon)\):

On the curve \(c_3\), the surface integral of the gradient is approximately:

\[
\int_{c_3} \nabla f \cdot dA \approx \text{Length}(c_3) \langle \nabla f, \Phi_\theta \rangle
\]

\[
= \varepsilon \left\langle \left(\frac{1}{\sin \phi} \frac{\partial f}{\partial \theta}, \frac{\partial f}{\partial \phi} \right), (1,0) \right\rangle
\]

\[
= \varepsilon \frac{1}{\sin \phi} \frac{\partial f}{\partial \theta} \Phi + \varepsilon, \phi
\]
The Spherical Laplacian

Consider the “square” on the sphere with endpoints \((\theta, \phi), (\theta + \varepsilon, \phi), (\theta + \varepsilon, \phi + \varepsilon)\) and \((\theta, \phi + \varepsilon)\):

Similarly, on the curve \(c_4\), the surface integral of the gradient is approximately:

\[
\int_{c_4} \nabla f \cdot dA \approx -\varepsilon \frac{1}{\sin(\phi)} \frac{\partial f}{\partial \theta} \theta, \phi
\]
The Spherical Laplacian

Consider the “square” on the sphere with end-points \((\theta, \phi), (\theta + \varepsilon, \phi), (\theta + \varepsilon, \phi + \varepsilon)\) and \((\theta, \phi + \varepsilon)\):

Summing these together, we can approximate the boundary integral by:

\[
\int_{\partial R} \nabla f \cdot dA \approx \varepsilon \left(\frac{1}{\sin \phi} \left[\frac{\partial f}{\partial \theta} \theta + \varepsilon, \phi - \frac{\partial f}{\partial \theta} \theta, \phi \right] \right) + \\
\varepsilon \left(\sin(\phi + \varepsilon) \frac{\partial f}{\partial \phi} (\theta, \phi + \varepsilon) - \sin(\phi) \frac{\partial f}{\partial \phi} (\theta, \phi) \right)
\]
The Spherical Laplacian

Consider the “square” on the sphere with endpoints \((\theta, \phi), (\theta + \varepsilon, \phi), (\theta + \varepsilon, \phi + \varepsilon)\) and \((\theta, \phi + \varepsilon)\):

Summing these together, we can approximate the boundary integral by:

\[
\int_{\partial R} \nabla f \cdot dA \approx \varepsilon \left(\frac{1}{\sin \phi} \varepsilon \frac{\partial}{\partial \theta} \left[\frac{\partial f}{\partial \theta} \phi, \phi \right] \right) + \varepsilon \left(\varepsilon \frac{\partial}{\partial \phi} \left[\sin(\phi) \frac{\partial f}{\partial \phi}(\theta, \phi) \right] \right)
\]
The Spherical Laplacian

Consider the “square” on the sphere with end-points \((\theta, \phi), (\theta + \varepsilon, \phi), (\theta + \varepsilon, \phi + \varepsilon)\) and \((\theta, \phi + \varepsilon)\):

Summing these together, we can approximate the boundary integral by:

\[
\int_{\partial R} \nabla f \cdot dA \approx \varepsilon^2 \left(\frac{1}{\sin \phi} \frac{\partial^2 f}{\partial \theta^2} \phi, \phi + \frac{\partial}{\partial \phi} \left[\sin \phi \frac{\partial f}{\partial \phi}(\theta, \phi) \right] \right)
\]
The Spherical Laplacian

Using the fact that the boundary integral can be approximated by:

$$\int_{\partial R} \nabla f \cdot dA \approx \varepsilon^2 \left(\frac{1}{\sin \phi} \frac{\partial^2 f}{\partial \theta^2} + \frac{\partial}{\partial \phi} \right) \left[\sin \phi \frac{\partial f}{\partial \phi} (\theta, \phi) \right]$$

and the surface integral can be approximated by:

$$\int_R \nabla^2 f \cdot dR \approx \varepsilon^2 \sin \phi \nabla^2 f (\theta, \phi)$$
The Spherical Laplacian

Using the fact that the boundary integral can be approximated by:

$$\int_{\partial R} \nabla f \cdot dA \approx \varepsilon^2 \left(\frac{1}{\sin \phi} \frac{\partial^2 f}{\partial \theta^2} \phi, \phi + \frac{\partial}{\partial \phi} \left(\sin \phi \frac{\partial f}{\partial \phi} (\theta, \phi) \right) \right)$$

and the surface integral can be approximated by:

$$\int_{R} \nabla^2 f \cdot dR \approx \varepsilon^2 \sin \phi \nabla^2 f (\theta, \phi)$$

we can apply Stokes’ Theorem to get:

$$\nabla^2 f (\theta, \phi) = \frac{1}{\sin^2 \phi} \frac{\partial^2 f}{\partial \theta^2} \phi, \phi + \frac{1}{\sin \phi} \frac{\partial}{\partial \phi} \left(\sin \phi \frac{\partial f}{\partial \phi} (\theta, \phi) \right)$$
The Spherical Laplacian

\[\nabla^2 f(\theta, \phi) = \frac{1}{\sin^2 \phi} \frac{\partial^2 f}{\partial \theta^2} \theta, \phi \hat{\theta} + \frac{1}{\sin \phi} \frac{\partial}{\partial \phi} \left[\sin \phi \frac{\partial f}{\partial \phi} (\theta, \phi) \right] \]

In order to compute the eigenvalues of the Laplacian associated to the spherical harmonics, we need to compute:

\[\nabla^2 Y_l^k (\theta, \phi) = \nabla^2 \left(\left(\Re^{ik\theta} P_l^k \right) \cos \phi \right) \]
The Spherical Laplacian

\[\nabla^2 f(\theta, \phi) = \frac{1}{\sin^2 \phi} \frac{\partial^2 f(\theta, \phi)}{\partial \theta^2} + \frac{1}{\sin \phi} \frac{\partial}{\partial \phi} \left[\sin \phi \frac{\partial f(\theta, \phi)}{\partial \phi} \right] \]

Taking the derivative with respect to \(\theta \) is easy:

\[\frac{1}{\sin^2 \phi} \frac{\partial^2 Y_l^k(\theta, \phi)}{\partial \theta^2} = \frac{1}{\sin^2 \phi} \frac{\partial^2}{\partial \theta^2} (i^{ik\theta} P_l^k \cos \phi) \]
The Spherical Laplacian

\[\nabla^2 f(\theta, \phi) = \frac{1}{\sin^2 \phi} \frac{\partial^2 f}{\partial \theta^2} \Theta, \phi \vec{\phi} + \frac{1}{\sin \phi} \frac{\partial}{\partial \phi} \left[\sin \phi \frac{\partial f}{\partial \phi}(\theta, \phi) \right] \]

Taking the derivative with respect to \(\theta \) is easy:

\[
\frac{1}{\sin^2 \phi} \frac{\partial^2 Y_l^k(\theta, \phi)}{\partial \theta^2} = \frac{1}{\sin^2 \phi} \frac{\partial^2}{\partial \theta^2} e^{ik\theta} P_l^k(\cos \phi) = \frac{-k^2}{\sin^2 \phi} e^{ik\theta} P_l^k(\cos \phi) \]
The Spherical Laplacian

\[\nabla^2 f(\theta, \phi) = \frac{1}{\sin^2 \phi} \frac{\partial^2 f}{\partial \theta^2} \phi, \phi + \frac{1}{\sin \phi} \frac{\partial}{\partial \phi} \left[\sin \phi \frac{\partial f}{\partial \phi} (\theta, \phi) \right] \]

Taking the derivative with respect to \(\theta \) is easy:

\[\frac{1}{\sin^2 \phi} \frac{\partial^2 Y_l^k (\theta, \phi)}{\partial \theta^2} = \frac{1}{\sin^2 \phi} \frac{\partial^2}{\partial \theta^2} \left(e^{ik\theta} P_l^k \cos \phi \right) \]

\[= \frac{-k^2}{\sin^2 \phi} e^{ik\theta} P_l^k \cos \phi \]

\[= \frac{-k^2}{\sin^2 \phi} Y_l^k (\theta, \phi) \]
The Spherical Laplacian

\[
\nabla^2 f (\theta, \phi) = \frac{1}{\sin^2 \phi} \frac{\partial^2 f}{\partial \theta^2} + \frac{1}{\sin \phi} \frac{\partial}{\partial \phi} \left[\sin \phi \frac{\partial f}{\partial \phi} (\theta, \phi) \right]
\]

Taking the derivative with respect to \(\phi \) is more complicated:

\[
\frac{1}{\sin \phi} \frac{\partial}{\partial \phi} \left(\sin \phi \frac{\partial Y_l^k (\theta, \phi)}{\partial \phi} \right) = \frac{1}{\sin \phi} \frac{\partial}{\partial \phi} \left(\sin \phi \frac{\partial}{\partial \phi} \left[i^k \theta P_l^k \cos \phi \right] \right)
\]
The Spherical Laplacian

\[
\nabla^2 f(\theta, \phi) = \frac{1}{\sin^2 \phi} \frac{\partial^2 f}{\partial \theta^2} \cdot \hat{\theta}, \hat{\phi} + \frac{1}{\sin \phi} \frac{\partial}{\partial \phi} \left[\sin \phi \frac{\partial f}{\partial \phi} (\theta, \phi) \right]
\]

Taking the derivative with respect to \(\phi \) is more complicated:

\[
\frac{1}{\sin \phi} \frac{\partial}{\partial \phi} \left(\sin \phi \frac{\partial Y_l^k (\theta, \phi)}{\partial \phi} \right) = \frac{1}{\sin \phi} \frac{\partial}{\partial \phi} \left(\sin \phi \frac{\partial}{\partial \phi} \left[e^{i k \theta} P_l^k \cos \phi \right] \right)
\]

\[
= \frac{e^{i k \theta}}{\sin \phi} \frac{\partial}{\partial \phi} \left(\sin \phi \frac{\partial P_l^k \cos \phi}{\partial \phi} \right)
\]

as it requires taking the derivatives of the associated Legendre polynomials.
Recall:

The associated Legendre polynomials are defined by the (somewhat hairy) formula:

\[P^k_l(x) = \frac{(-1)^k}{2^l l!} \left(x^2 - 1 \right)^{\frac{l}{2}} \frac{d^{l+k}}{dx^{l+k}} \left(x^2 - 1 \right) \]
One can show, (but we won’t) that the associated Legendre polynomials satisfy the following two identities:

\[
\frac{dP^k_l \cos \phi}{d\phi} \cos \phi = l \cos(\phi) P^k_l \cos \phi - (l + k) P^k_{l-1} \cos \phi
\]

\[
0 = (l - k) P^k_l \cos \phi - \cos(2l - 1) P^k_{l-1} \cos \phi + (l + k - 1) P^k_{l-2} \cos \phi
\]
The Spherical Laplacian

Plugging these identities into the equation for the Laplacian, we get:

\[
\frac{1}{\sin \phi} \frac{\partial}{\partial \phi} \left(\sin \phi \frac{\partial Y_l^k (\theta, \phi)}{\partial \phi} \right) = \frac{k^2 Y_l^m (\theta, \phi)}{\sin^2 \phi} - l(l + 1)Y_l^m (\theta, \phi)
\]
The Spherical Laplacian

Plugging these identities into the equation for the Laplacian, we get:

\[
\frac{1}{\sin \phi} \frac{\partial}{\partial \phi} \left(\sin \phi \frac{\partial Y_l^k(\theta, \phi)}{\partial \phi} \right) = \frac{-k^2 Y_l^m(\theta, \phi)}{\sin^2 \phi} - l(l+1)Y_l^m(\theta, \phi)
\]

In sum, this gives:

\[
\nabla^2 Y_l^k(\theta, \phi) = -l(l+1)Y_l^k(\theta, \phi)
\]
Outline

• Stokes’ Theorem
• Tangent Spaces
• Gradients
• The Spherical Laplacian
• Applications
Smoothing

In the case of a functions on a plane, we had Newton’s Law of Cooling:

“The rate of heat loss of a body is proportional to the difference in temperatures between the body and its surroundings.”
Smoothing

In the case of a functions on a plane, we had Newton’s Law of Cooling:

“The rate of heat loss of a body is proportional to the difference in temperatures between the body and its surroundings.”

This can be expresses as a PDE:

$$\frac{\partial F}{\partial t} = \lambda \nabla^2 F$$
Smoothing

Using the fact that the spherical harmonics are eigenvectors of the Laplacian, we get solutions of the form:

\[F_l^k (\theta, \phi, t) = e^{-\lambda (l+1)t} Y_l^k (\theta, \phi) \]
Smoothing

Using the fact that the spherical harmonics are eigenvectors of the Laplacian, we get solutions of the form:

$$F^k_l (\theta, \phi, t) = e^{-\lambda(l+1)t} Y^k_l (\theta, \phi)$$

Since the linear sum of solutions is also a solution, solutions to the PDE will have the form:

$$F(\theta, \phi, t) = \sum_{l=0}^{\infty} \sum_{k=-l}^{l} a^k_l e^{-\lambda(l+1)t} Y^k_l (\theta, \phi)$$

and we have freedom in choosing the linear coefficients.
Smoothing

To satisfy the initial condition:

\[F(\theta, \phi, 0) = f(\theta, \phi) \]

we need to compute the spherical harmonic decomposition of \(f \):

\[
f(\theta, \phi) = \sum_{l=0}^{\infty} \sum_{k=-l}^{l} \hat{f}(l, k) Y_l^k(\theta, \phi)
\]
Smoothing

To satisfy the initial condition:

\[F(\theta, \phi, 0) = f(\theta, \phi) \]

we need to compute the spherical harmonic decomposition of \(f \):

\[
f(\theta, \phi) = \sum_{l=0}^{\infty} \sum_{k=-l}^{l} \hat{f}(l, k) Y_{l}^{k}(\theta, \phi)\]

and then we set the solution to be:

\[
F(\theta, \phi, t) = \sum_{l=0}^{\infty} \sum_{k=-l}^{l} \hat{f}(l, k) e^{-\lambda(l+1)t} Y_{l}^{k}(\theta, \phi)
\]
Smoothing

\[F(\theta, \phi, t) = \sum_{l=0}^{\infty} \sum_{k=-l}^{l} \hat{f}(l, k) e^{-\lambda(l+1)t} Y_l^k (\theta, \phi) \]
The Spherical Wave Equation

We can repeat the same type of argument for the wave equation, where the acceleration is proportional to the difference in values:

\[
\frac{\partial^2 F}{\partial t^2} = \lambda \nabla^2 F
\]
The Spherical Wave Equation

Again, using the fact that the spherical harmonics Y_l^k are eigenvectors of the Laplacian with eigenvalues $l(l+1)$, we get solutions of the form:

$$F_l^{k+} (\theta, \phi, t) = e^{i \sqrt{2l(l+1)} t} \cdot Y_l^m (\theta, \phi)$$

$$F_l^{k-} (\theta, \phi, t) = e^{-i \sqrt{2l(l+1)} t} \cdot Y_l^m (\theta, \phi)$$
The Spherical Wave Equation

Thus, given the initial conditions:

\[F(\theta, \phi, 0) = f(\theta, \phi) \]
\[\frac{\partial}{\partial t} F(\theta, \phi, 0) = 0 \]

we get the solution:

\[F(\theta, \phi, t) = \sum_{l=0}^{\infty} \sum_{k=-l}^{l} \hat{f}(k, l) \cos \left(\sqrt{\lambda l(l+1)t} \right) Y_l^k(\theta, \phi) \]
The Spherical Wave Equation

\[F(\theta, \phi, t) = \sum_{l=0}^{\infty} \sum_{k=-l}^{l} \hat{f}(k, l) \cos(\sqrt{\lambda l(l+1)t} \hat{Y}_l^k(\theta, \phi)) \]

Waving Cow

Waving Gaussians