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Abstract

A deformation invariant representation of surfaces, the GPS embedding, is introduced using the eigenvalues and
eigenfunctions of the Laplace-Beltrami differential operator. Notably, since the definition of the GPS embedding
completely avoids the use of geodesic distances, and is based on objects of global character, the obtained repre-
sentation is robust to local topology changes. The GPS embedding captures enough information to handle various
shape processing tasks as shape classification, segmentation, and correspondence. To demonstrate the practical
relevance of the GPS embedding, we introduce a deformation invariant shape descriptor called G2-distributions,
and demonstrate their discriminative power, invariance under natural deformations, and robustness.

1. Introduction

Of crucial importance in computer graphics, shape model-
ing, medical imaging and 3D face recognition is matching,
retrieval, correspondence, and segmentation of non-rigid,
deformable shapes. An interesting problem, then, is to obtain
a shape representation that is invariant under natural defor-
mations, and, at the same time, contains enough information
to perform these shape processing tasks.

Since the natural articulations of shapes usually leave un-
changed the geodesic distances between the surface points,
such deformations correspond to various isometric— the met-
ric tensor stays unchanged — embeddings of the surface into
Euclidean space. Thus, it is most natural to base deformation
invariant representations on geodesic distances. One such
representation, the canonical forms of [EK03], have been
successfully used for such tasks as deformable shape classi-
fication [EKO03], and pose invariant segmentation [KLTO05].

Unfortunately, geodesic distances are sensitive to local
topology changes. As a result, the representations based on
them will have limited robustness. Can we avoid using the
geodesic distances completely?

Our positive answer to this question is inspired by Lévy’s
beautiful paper [Lév06], where drawing on an elegant anal-
ogy with Chladni plates, Lévy convincingly argues that the
eigenfunctions of the Laplace-Beltrami differential opera-
tor “understand the geometry” — in some sense, they cap-
ture the global properties of the surface. Potential applica-
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tions of these eigenfunctions, as exemplified in [Lév06], in-
clude signal processing on surfaces, geometry processing,
pose transfer, and parametrization. Another source of inspi-
ration is [RWPOS5], where the eigenvalues of the same oper-
ator were used as a shape descriptor.

Our main contribution is to introduce a deformation in-
variant representation of surfaces, namely the GPS embed-
ding (Section 4), which is based on combining the Laplace-
Beltrami eigenvalues and eigenfunctions. The GPS embed-
ding is itself a surface in the infinite-dimensional space,
where the inner product and distance are related to the
Green’s function. Similar to canonical forms, the GPS em-
bedding is invariant under natural deformations of the origi-
nal surface, and can be used for deformable shape processing
— its potential applications are as wide as that of canonical
forms. We believe that the GPS embedding is the first rep-
resentation to achieve such a scope without using geodesic
distances at all.

We describe our framework for computing the GPS em-
bedding in Section 5. It is motivated by the Finite Element
approach of [VL0O7], but our explanations carry more geo-
metric flavor. We make several remarks about the discrete
Laplace-Beltrami operator that we think are novel.

In Section 6 we demonstrate how our framework can be
employed for non-rigid shape classification. To this end we
introduce a deformation invariant shape descriptor — G2-
distributions. The idea is simple: for a given surface com-
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pute its GPS embedding; then, find the D2 shape distribu-
tion [OFCDO2] of the GPS embedding (remember, the GPS
embedding is also a surface). What renders the resulting de-
scriptor useful for non-rigid shape retrieval is the deforma-
tion invariance of the GPS embedding, and, thereby, of the
descriptor. Curiously, these G2-distributions turn out to be
related to the distribution of the Green’s function’s values on
the surface.

Our initial experiments show that, first, G2-distributions
are insensitive to isometric deformations; second, they are
robust to local topology changes; third, they show promise
to be discriminating among different object classes. These
observations provide a practical confirmation of some of the
theoretical properties of the GPS embedding, and reinforce
our belief that the GPS embedding captures enough infor-
mation and is robust enough to provide a practically useful
framework for deformable shape processing.

2. Related work

Deformation invariant shape representation: Most simi-
lar to our approach in scope are methods based on spectral
embedding [EK03, JZ07]. One considers the matrix of pair-
wise geodesic distances between points on the surface. Spec-
tral embedding, for example Multidimensional Scaling, is
used to “flatten” this structure — to get an embedding of these
points into the Euclidean space such that Euclidean dis-
tances differ from the original geodesic ones as little as pos-
sible. Since object articulations change geodesic distances
little, this approach yields an isometry invariant represen-
tation. Such representations were used for shape classifica-
tion [EK03,JZ07], part correspondence [JZ06], and segmen-
tation [KLTO05].

Unfortunately, these methods can be very sensitive to lo-
cal changes in the topology — a “short circuit” can affect
many geodesic distances by rendering canonical forms of
two similar objects very different. A solution to circumvent
this problem tries to combine both intrinsic (deformation in-
variant, e.g. geodesic) and extrinsic (not deformation invari-
ant, e.g. Euclidean) distance measures as in [BBKO7]. No-
tice that when extrinsic features are incorporated, the result-
ing shape representation loses its isometry invariance.

Our approach is also based on embedding a surface into
a higher-dimensional Euclidean space. However, GPS em-
bedding does not rely on extrinsic features at all, yet it is ro-
bust to local topology changes. Moreover, together with the
eigenvalues, GPS embedding is a complete isometry invari-
ant of a surface — given the GPS embedding and the spec-
trum of the Laplace-Beltrami operator there is a unique cor-
responding surface up to an isometric deformation.

It is worthwhile to emphasize our differences from Jain
and Zhang [JZ06,JZ07] once more, because of the common
theme of eigenvalues and eigenvectors. Notice that Jain and
Zhang use the eigenvalues and eigenvectors of the geodesic

distance matrix after application of some kernel; they do not
use the Laplace-Beltrami operator. We, on the other hand,
do not use geodesic distances or any variation of them at all,
but use the eigenvalues and eigenfunctions of the Laplace-
Beltrami operator.

Laplace-Beltrami differential operator also appears in the
work of Reuter et al. [RWPOS5]. They propose to use the set
of Laplace-Beltrami eigenvalues — the spectrum — as a shape
signature. They show that the spectrum contains enough
information to discriminate shapes. However, it should be
noted that the spectrum does not determine the surface
uniquely up to isometry; there are so called isospectral
shapes — non-isometric surfaces that have coinciding spec-
tra [Cip93]. More importantly, the possible applications of
the GPS embedding are wider than just of the spectrum
alone.

Applications of Laplace-Beltrami: Discrete versions of
Laplace and Laplace-Beltrami operators, usually both re-
ferred to as Laplacians, found many applications in geom-
etry processing [Sor06]. To mention a few, Taubin’s seminal
paper [Tau95] proposes graph Laplacian with Tutte weights
for surface fairing. In [NGHO4] Laplacians with different
weights are used to control the number of critical points of a
function on a surface. Dong et al. [DBG*06] use the eigen-
vectors of a discrete Laplacian for surface quadrangulation.
Discrete Laplacian shows up in [XPB06], where Xu et al.
handle surface blending, N-sided hole filling and free-form
surface fitting using partial differential equations.

In manifold learning, eigenvalues and eigenvectors of
Laplace-Beltrami operator were used to define eigenmaps
[BNO3] and an infinite collection of so called diffusion maps
[CLL*05]; this collection includes the map we use to de-
fine the GPS embedding. Inadvertently, our formulas in Sec-
tion 4 are similar to [CLL*05]. However, both our motiva-
tions and justifications are different; and it is important that
we single out only one map among all possible. Diffusion
maps were proposed for dimensionality reduction, whereas
the GPS embedding does exactly the opposite — embeds a
surface into a higher dimensional space. It is worth noting
that in manifold learning when one passes to the discrete set-
ting, the discrete Laplacians used are weighted graph Lapla-
cians, while for our approach it is absolutely essential to use
one of the “faithful” Laplacians — the ones based on discrete
differential geometry, because otherwise the representation
becomes dependent on the particular triangulation of the sur-
face.

3. Laplace-Beltrami framework

For a closed compact manifold surface S, let A denote its
Laplace-Beltrami differential operator. Consider the equa-
tion

Ad = A9.

(© The Eurographics Association 2007.



R. M. Rustamov / Laplace-Beltrami Shape Representation

A scalar A for which the equation has a nontrivial solution is
called an eigenvalue of A; the solution ¢ is called an eigen-
function corresponding to A. Note that A = 0 is always an
eigenvalue — the corresponding eigenfunctions are constant
functions.

The eigenvalues of the Laplace-Beltrami operator are
non-negative and constitute a discrete set. We will assume
that the eigenvalues are distinct, so we can put them into as-
cending order

M=0<M<h<...<A<..

The appropriately normalized eigenfunction corresponding
to A; will be denoted by ¢;. The normalization is achieved
using the L, inner product. Given two functions f and g on
the surface, their inner product is denoted by (f,g), and is
defined as the surface integral

(f:8) :/;fg.

Thus, we require that (¢;,¢;) = 1.

Since the Laplace-Beltrami operator is Hermitian, the
eigenfunctions corresponding to its different eigenvalues are
orthogonal:

(9i,0;) = /S¢i¢j =0,

whenever i # j. Given a function f on the surface, one can
expand it in terms of the eigenfunctions

f=codo+cidr+cadr+---,

where the coefficients are

ci = {f,0:) :/Sffl)i.

Thus, eigenfunctions of the continuous Laplace-Beltrami
operator give an orthogonal basis for the space of functions
defined on the surface. Lévy’s main point in [Lév06] is that
this basis is the one; the expansion coefficients provide a
canonical parametrization of functions defined on the sur-
face, and all geometry processing should be carried out in
this coefficient domain. For example, to smooth a function
one should simply discard the coefficients corresponding to
the larger eigenvalues, i.e. truncate the infinite expansion
above.

Whether the Laplace-Beltrami eigenbasis is the one or
not, it still would be relevant for deformable shape matching
— this is because of Laplace-Beltrami’s isometry invariance.
Perhaps, another factor to single out the Laplace-Beltrami
operator among the infinitude of differential operators would
be its “simplicity” and well-studiedness.

4. Global Point Signatures

Can we intrinsically characterize a point on a surface — de-
scribe its location without referring to an external coordinate
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system? Let us remind the reader that the Laplace-Beltrami
operator and its eigenfunctions are intrinsic in that sense: the
values of eigenfunctions can be thought as numbers attached
to the points on the surface, these numbers do not depend on
how the surface is located in Cartesian coordinates. Thus, it
is natural to try to characterize the points by the values of the
eigenfunctions.

Given a point p on the surface, we define its Global Point
Signature, GPS(p), as the infinite-dimensional vector

1 1 1

where 0;(p) is the value of the eigenfunction ¢; at the point
p- Notice that ¢ is left out because it is void of informa-
tion. The name comes from the intuition that this infinite-
dimensional vector is a signature, a characterization of the
point within the global “context” of the surface. Our motiva-
tion for normalizing by the inverse root of eigenvalues will
be provided shortly.

GPS can be further considered as a mapping of the surface
into infinite dimensional space. The image of this map will
be called the GPS embedding of the surface. We will refer
to the infinite dimensional ambient space of this embedding
as the GPS domain. Let us list some of the properties of the
GPS embedding.

First, the GPS embedding of a surface without self-
intersections has no self-intersections either. We need to
prove that distinct points have distinct images under the
GPS. To this end, suppose that for two surface points p # q
we have GPS(p) = GPS(q). This means that the eigenfunc-
tions of the Laplace-Beltrami operator satisfy the equality
0;(p) = 0;(q). Given any function f on the surface, consider
its expansion in terms of the eigenfunctions. Under some
mild conditions, the expansion will converge to f pointwise;
consequently, the equality f(p) = f(q) will hold. However,
one can easily imagine a “nice” function that takes distinct
values at those two points — a contradiction meaning that the
GPSs must have been different.

Second, GPS embedding is an isometry invariant. This
means that two isometric surfaces will have the same im-
age under the GPS mapping. Indeed, the Laplace-Beltrami
operator is defined completely in terms of the metric ten-
sor, which is itself an isometry invariant. Consequently, the
eigenvalues and eigenfunctions of isometric surfaces coin-
cide, i.e. their GPS embeddings also coincide.

Third, given the GPS embedding and the eigenvalues, one
can recover the surface up to isometry. In fact, eigenvalues
and eigenvectors of the Laplace-Beltrami operator uniquely
determine the metric tensor. This stems from completeness
of eigenfunctions, which implies the knowledge of Laplace-
Beltrami, from which one immediately recovers the metric
tensor [Ber(03], and so, the isometry class of the surface.

Fourth, the GPS embedding is absolute, it is not subject to
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rotations or translations of the ambient infinite-dimensional
space. To explain, consider the result, say, of geodesic MDS
embedding. This embedding is determined only up to trans-
lations and rotations, there is no uniquely determined po-
sitional normalization relative to the embedding domain.
Thereby, for example, in order to compare two shapes, one
still needs to find the appropriate rotations and translations to
align the MDS embeddings of the shapes. On the other hand,
the GPS embedding is uniquely determined — two isomet-
ric surfaces will have exactly the same GPS embedding (ex-
cept for reflections, because the signs of eigenfunctions are
not fixed), no rotation or translation in the ambient infinite-
dimensional space will be involved. For example, the center
of mass of the GPS embedding will automatically coincide
with the origin — this follows from the orthogonality of the
eigenfunctions, namely from the equality (;,09) = 0, if one
remembers that ¢ is constant.

Fifth, the inner product and, thereby, the Euclidean dis-
tance in the GPS domain have a meaningful interpretation.
Here we will need a quick digression about the Green’s func-
tion, G(x,x’). One way to solve the differential equation

Au=g,

where g is some function on the surface, is through the for-
mula

u(x) = [ Gx.x)s(x),

where the surface integral is taken with respect to x’. Notice,
that the absolute value of G(x,x’) measures how much u(x)
is influenced by the value of g(x’) — how relevant is the input
at x’ for the output at x.

Green’s function can be written in terms of the eigenfunc-
tions as follows

G(x,x) = i 74)"(,(%"()(/).

Clearly, in our setting, G(p,q) = GPS(p) - GPS(q) —the dot
product of two infinite-dimensional vectors — which shows
that the inner product in the GPS domain corresponds to
nothing but the Green’s function.

Why Green’s function is important? It would not be an
exaggeration to say that every successful application of
Laplace-Beltrami operator points to the relevance of Green’s
function in shape processing. Let us give an example from
mesh editing. To modify a mesh, [YZX*04] consider guid-
ance fields for each mesh vertex — these represent the sought
modifications. However, directly applying such a modifica-
tion would tear the mesh. Instead, the best possible (in the
least squares sense) modification is found that will keep the
mesh intact. Such a modification is provided by the solu-
tion of the equation Au = g, where g is the divergence of
the guidance field. Consequently, within this mesh editing
framework, the magnitude of the Green’s function |G(p, q)]
is a measure of how much the points p and q are bound by

Figure 1: The k-means clustering on the GPS coordinates
results in a pose invariant segmentation.

modifications of each other — thus, Green’s function in some
sense measures the extent to which two points are geometri-
cally "bundled" together. Thus, the inner product in the GPS
domain is a measure of “togetherness” of two points. Our
segmentation example in Figure 1 depends on this fact.

To conclude, eigenvalues and eigenfunctions of the
Laplace-Beltrami operator are isotopy invariants of a sur-
face. The GPS embedding is based on a combination of
these, a combination specifically designed to yield a mean-
ingful inner product and, thereby, distance in the GPS do-
main. In contrast to geodesic distances, eigenfunctions and
eigenvalues carry more global character, which leads to more
stable representations. As a result, at least theoretically, the
GPS embedding provides an ideal tool for processing of non-
rigid shapes — matching, segmentation, and correspondence.

5. Discrete setting

As a terminological note let us mention that it is customary
to call Laplace-Beltrami operator as a Laplacian. In addi-
tion, one should differentiate between a discrete Laplacian
and a combinatorial one, e.g. Graph Laplacian: the former
is specifically designed to keep many of the properties of its
continuous counterpart and to faithfully capture geometric
and topological properties of the underlying surface, while
the latter is sensitive to the peculiarities of the particular tri-
angulation. For our purposes it is crucial that mesh depen-
dence is as minimal as possible — we have to use a discrete
Laplacian.

Interestingly, constructing a discrete Laplace-Beltrami
operator is a highly non-trivial task. Perhaps [PP93] was
the first paper to consider an approach different from one
based on the central difference formula. Afterwards, several
versions were proposed in [DMSB99], [GSS99], [Tau00],
[MDSBO02], [Xu04b]. The comparative study carried out
in [XuO4a] singles out the versions described in Desbrun
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et al. [DMSB99] and Meyer et al. [MDSBO02] — these two
were the only ones to converge in important cases to the
continuous counterpart. Moreover, Xu [Xu06] proposes an-
other convergent discrete Laplacian by modifying the one
by Meyer et al.; his theoretical analysis shows that, at least
on the sphere, this modification leads to better convergence
properties. Thus, we decided to base our computations on
the discrete Laplacian of Xu, which we will shortly review.

Before embarking, let us explain our notation. We use ar-
rows to distinguish (column) vectors. For example V is a vec-
tor, and its i-th entry is denoted by v;, without an arrow; on
the other hand, V; is the i-th vector within some indexed set
of vectors. Capital letters are used for matrices. Thus, M is
amatrix, and its ij entry would be denoted by M;;. The ver-
tices of the triangle mesh representing the surface are de-
noted by p;. Given a function f on the surface, its discrete
version is the vector f with f; = f(p;).

5.1. The generalized eigenvalue problem

We shortly review the definition of the discrete Laplace-
Beltrami differential operator. For a function f defined on
the surface, the value of Af is approximated as
1 cotoj +cotf;;
Afpy~— ¥ SR — f(py).
' JEN(D)

The angles appearing in this formula are depicted in the Fig-
ure 2; s; is the area of the shaded region in the same figure.
The summation is over all vertex indices j adjacent with ver-
tex p;. Let us denote

cotoy;j + cot Bij
m; j= 72

when i and j are adjacent, and m;; = 0 otherwise.

Figure 2: Definitions of the angles and the area appearing
in the discrete Laplace-Beltrami operator.

(© The Eurographics Association 2007.

Using the column-vector f, the formula above can be
written as a matrix-vector multiplication Af ~ L f . The in-
volved matrix L — the discrete Laplacian— has the entries as
follows

Yimu/si ifi= ],
Lijj=< —m;j/s; ifiand jadjacent,
0 otherwise.

Since the areas s; associated with mesh vertices can vary
from vertex to vertex, the discrete Laplacian matrix L is
not symmetric. Finding the discrete counterpart of Laplace-
Beltrami eigenvalues and eigenfunctions is equivalent to the
standard eigenvalue problem for the matrix L

LV = AV.

The non-symmetry of L causes problems — both numeri-
cal and theoretical. First, we do not have a guarantee that
the eigenvalues and eigenvectors of a nonsymmetric matrix
will be real; even if they were real, the numerical proce-
dures would sometimes yield complex results. Second, it
is not clear how to normalize the eigenvectors — using the
usual dot product of vectors causes inconsistency. Indeed,
the eigenfunctions of the continuous Laplace-Beltrami op-
erator are orthogonal, while the eigenvectors of the discrete
version are not (if one uses the usual dot product). Vallet
and Levy [VLO07] use the Finite Element Method to explain
the root of this inconsistency. Essentially, the following ex-
planation is equivalent to theirs, yet it has more geometric
falvor.

Let us rewrite the eigenvalue problem above as a gen-
eralized eigenvalue problem. Consider the diagonal matrix
S with §;; = s;. Denote by M the matrix whose entries are
given by M;; = m;j, the cotangent weights above. Notice
that L = S~'M. The equation LV = AV can be rewritten as
S™'MV =¥, or

MV = ASV. ()]

Although this formulation is equivalent to the standard one —
we would get the same eigenvalues and eigenvectors as in the
standard case — this one goes under the name of generalized
eigenvalue problem.

Let us remind that two matrices appear in a generalized
eigenvalue problem, say A and B: the equality to satisfy is
AV = ABYV. If matrix A is symmetric, and matrix B is sym-
metric positive-definite, then the generalized eigenvectors V
corresponding to different generalized eigenvalues A are or-
thogonal. However, the orthogonality here is in terms of B-
inner (dot) product:

(ii, W) = ii’ Bip.

Moreover, all of the generalized eigenvalues/eigenvectors
are real. We see that if B = I, the identity matrix, we are
back to the standard eigenvalue problem, and the statements
above are well-known facts about symmetric matrices. Also
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notice that the /-inner product would be the standard dot
product of vectors.

Going back to the equation 1, note that both of S and M
are symmetric, and, obviously, S is positive-definite. By the
facts mentioned about the generalized eigenvalue problem,
the eigenvalues and eigenvectors of discrete Laplacian are to
be real. Of course, this fact is not new — the news is that nu-
merical methods for such generalized eigenvalue problems
supposedly “know” that the result must be real and behave
accordingly. We used the Arnoldi method of ARPACK (this
is how MATLAB solves eigenvalue problems) in our exper-
iments, never complex eigenvalues or eigenvectors were ob-
tained.

5.2. Geometric interpretation

One more piece of information from the generalized formu-
lation is about the orthogonality of eigenvectors. We see that
the generalized eigenvectors of the problem 1, which are
same as the standard eigenvectors of the Laplacian L, are
orthogonal with respect to the S-inner product

(¥, 7;)s =V 87; =0,
when i # j. We would like to interpret this geometrically.

In the continuous case, the inner product contains a sur-
face integral. Let us investigate how a surface integral can
be discretized. Let f be a continuous function defined on the
surface. The reader can easily see that the approximation

|~ L

is appropriate. Indeed, the sum of s;’s is equal to the total
area of the surface mesh — the corresponding regions con-
stitute a complete covering of the surface, and our approxi-
mation corresponds to assuming the function to be constant
within these regions. Now let us approximate the continuous
inner product of two functions f and g:

<f,g>=/Sf8%2figisi=fTS§:<f7§>s~

The discrete version of the continuous inner product is the
S-inner product!

To make the point stronger, consider computing the center
of mass of a surface. Of course, the naive averaging formula
Cy = %Zi pi would not work unless the vertices are dis-
tributed evenly on the surface. However, the following one
would give a good approximation Cyy = ﬁ):isip,-. In the
same manner, the formula for the inner product must contain
the the areas s; to weight the vertex contributions appropri-
ately.

Clearly, the S-orthogonality of the eigenvectors corre-
sponds to the orthogonality of the eigenfunctions in the con-
tinuous case. The generalized formulation has immediately
revealed the root of our yearning for symmetric Laplacians

— the hidden expectation that eigenvectors should be orthog-
onal with respect to the standard dot product (/-inner prod-
uct). Moreover, since the eigenvectors of symmetric Lapla-
cians are orthogonal with respect to the standard dot product
— a product that by the above does not have any clear ge-
ometric meaning, unless the mesh is uniform — one should
not expect symmetric Laplacians to be faithful to the contin-
uous Laplace-Beltrami differential operator. We call this the
dual faithfulness criterion: if a Laplacian is to be faithful,
then its eigenvectors should be orthogonal with respect to a
meaningful inner product, a product that is an appropriate
discretization or approximation of the continuous counter-
part. Consequently, for a given triangulated surface, a sym-
metric discrete Laplacian can be faithful only if the mesh
vertices are distributed uniformly over the surface area. Let
us emphasize that this result is not about the particular form
of Laplacians we are considering (in that case it would have
been a trivial fact), but is a statement expressing impossibil-
ity in general.

5.3. Computations

All of the computations were performed in MATLAB. The
eigenvectors were normalized to have unit length. Here
length is defined in terms of the S-inner product by the for-
mula

-2 = o T o=
V|7 = (v, ¥)s = v SV

Notice that this normalization is crucial for computations of
distances in the GPS domain.

For shape classification we used decimated models —
number of vertices ranged from a few thousands to twenty
five thousands. Due to the 1/+/A dependence of the GPS co-
ordinates, the distances in the GPS domain were dominated
by the low frequency eigenvectors (small eigenvalues). The
number of eigenvectors needed was no more than 25. As a
result, the computations took only 5-7 seconds on an Intel
T7200 2GHz laptop. Still, to give an idea, computing 250
eigenvectors took about 70-100 seconds.

6. Shape classification using the GPS embedding

The GPS embedding gives a deformation independent em-
bedding of a shape into the infinite dimensional space. To
achieve fast comparison of models, from this embedding we
extract a concise descriptor. Of course, we do not work with
infinite dimensional space, but consider the projection onto
the first d dimensions.

For simplicity, we use a modification of d2 distributions
introduced in [OFCDO02]. Essentially, d2 is the histogram
of pairwise distances between the points uniformly sampled
from the surface. To capture more information we modify d2
somewhat: instead of using just one histogram, we construct
m? histograms(actually m(m+ 1) /2, because of symmetry),
where m is some integer. First, consider m equally spaced

(© The Eurographics Association 2007.
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spherical shells centered at the origin of d-dimensional
space. These subdivide the image of the GPS embedding
into patches contained between successive shells. Each of
our m* histograms captures the distribution of distances be-
tween points one of which belongs to one inter-shell patch,
the other to another patch.

Let us repeat again that these histograms are not computed
on the object itself, but on its GPS embedding. Clearly, our
descriptor is related to the distribution of Green’s function
G(p,q) for uniformly sampled points p and q on the sur-
face. This is why we call this descriptor as the object’s G2-
distribution.

Results: For successful shape classification local modifica-
tions even if they include topology changes should affect the
shape signature only slightly. This is where, for example,
the geodesic multidimensional scaling experiences problems
[BBKO7]. To test the stability of the GPS embedding in
this context we compare the G2-distributions of the orig-
inal Homer model with its modification. The modification
adds a “short-circuit” at the feet by welding the mesh within
the red circle in Figure 3. The corresponding G2-distribution
histograms are shown — red for the original and blue for the
modified. Clearly, there is only small difference between the
signatures.

How well does GPS tolerate large natural shape deforma-
tions? Seven deformations of Armadillo obtained by meth-
ods of [YBS06], see Figure 4, provide us with a testing
ground. Figure 5 clearly reveals that isometric deformations,
however large they might be, influence the G2-distributions
only slightly. All of the Armadillo models were clustered

(o))

N
L

N
L

Figure 3: The G2-distribution histograms for the original
Homer versus topology modified version of the model are
shown. For clarity m = 1 distribution is shown; using more
refined G2-distribution gives similar results, e.g. for m = 8
see Figure 5. The horizontal axis shows the histogram bin
numbers.
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Figure 4: Armadillo and its deformations.
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Figure 5: The classical MDS projection of shape similari-
ties as computed using the G2-distributions. The dimension
of the GPS embedding is d = 15; the number of shells used
is m = 8, which generates 36 histograms. The sum of L2 dis-
tances between respective histograms is used to compare two
objects.

together very tightly. The same figure also reveals that G2-
distributions can distinguish objects belonging to different
categories well.

The last concern we address is whether our discrete
framework is sensitive to the underlying triangulation. The
answer is again provided by Armadillos: the original Ar-
madillo has been independently simplified from a denser
model, and it has some five times more vertices than the de-
formations, yet it has been clustered together with the other
Armadillos.



R. M. Rustamov / Laplace-Beltrami Shape Representation

7. Summary and future work

We have described a new framework to represent non-rigid
shapes. Our main contribution is to introduce the GPS em-
bedding as a means of ripping a surface from its “transient”,
Euclidean embedding related properties, to keep its essence
— features that are isometry invariant.

To demonstrate the practical relevance of the GPS embed-
ding we introduced G2-distributions as shape descriptors,
and have conducted initial studies of their discriminative
power, robustness to local shape changes, including topol-
ogy modifications, and deformation independence. We plan
to perform large-scale experiments to further understand the
properties of the GPS embedding based signatures.

The main drawback of the Laplace-Beltrami framework is
its inability to deal with degenerate meshes. We did not men-
tion surfaces with boundaries neither. However, we think
that one should be able to handle them by imposing appro-
priate boundary conditions.

We should also mention that in practice there are two
problems while working with eigenvalues and eigenvectors
in general [JZ06]: the signs of eigenvectors are undefined,
and two eigenvectors may be swapped. Using d2 distribu-
tions indirectly addresses both of these issues. Further anal-
ysis is needed to clarify the consequences of these factors for
shape processing when the GPS embedding is used directly.

Apart from shape classification, we expect the GPS em-
bedding to be relevant in the context of shape correspon-
dence and segmentation. Figure 1 shows a preliminary result
from our segmentation experiments using the GPS. Simple
k-means clustering based on distances in the GPS domain
was performed to segment the Armadillos into six patches,
no further optimization has been done. The figure demon-
strates pose-oblivious nature of such segmentation. These re-
sults and applications described in [Lév06, VLO7] raise hope
that Laplace-Beltrami eigenfunctions will provide to geome-
try processing what Fourier basis has provided to signal pro-
cessing.

8. Acknowledgements

All of the models except the Dinopet and the sphere were
downloaded from AIM@SHAPE Shape Repository. Seven
deformations of Armadillo obtained by methods of [YBS06]
are courtesy of Shin Yoshizawa. The rest of the models are
courtesy of INRIA.

I am deeply grateful to the anonymous reviewers for their
detailed and useful comments that helped improve the article
immensely.

References

[BBKO7] BRONSTEIN A. M., BRONSTEIN M. M., KIM-
MEL R.: Joint intrinsic and extrinsic similarity for recog-

nition of non-rigid shapes. Tech. Rep. CIS-2007-01-2007,
Computer Science Department, Technion, March 2007.

[Ber03] BERGER M.: A panoramic view of Riemannian
geometry. Springer-Verlag, Berlin, 2003.

[BNO3] BELKIN M., N1YOGI P.: Laplacian eigenmaps for
dimensionality reduction and data representation. Neural
Comput. 15, 6 (2003), 1373-1396.

[Cip93] CIPRA B.: You can’t always hear the shape of a
drum. What’s happening in the Mathematical Sciences, 1
(1993).

[CLL*05] CoIiFMAN R. R., LAFON S., LEE A. B.,
MAGGIONI M., NADLER B., WARNER F., ZUCKER
S. W.: Geometric diffusions as a tool for harmonic analy-
sis and structure definition of data: Diffusion maps. PNAS
102,21 (2005), 7426-7431.

[DBG*06] DONG S., BREMER P.-T., GARLAND M.,
Pascuccrt V., HART J. C.: Spectral surface quadran-
gulation. In TOG(SIGGRAPH) (2006), pp. 1057-1066.

[DMSB99] DESBRUN M., MEYER M., SCHRODER P.,
BARR A. H.: Implicit fairing of irregular meshes us-
ing diffusion and curvature flow. In SIGGRAPH (1999),
pp. 317-324.

[EKO3] ELAD A., KIMMEL R.: On bending invariant sig-
natures for surfaces. IEEE Trans. Pattern Analysis and
Machine Intelligence 25, 10 (2003), 1285-1295.

[GSS99] Guskov I., SWELDENS W., SCHRODER P.:
Multiresolution signal processing for meshes. In SIG-
GRAPH (1999), pp. 325-334.

[JZ06] JAIN V., ZHANG H.: Robust 3D shape correspon-
dence in the spectral domain. In Shape Modeling Interna-
tional (2006).

[JZ07] JAIN V., ZHANG H.: A spectral approach to shape-
based retrieval of articulated 3d models. Computer Aided
Design 39 (2007), 398-407.

[KLT05] KATZ S., LEIFMAN G., TAL A.: Mesh segmen-
tation using feature point and core extraction. The Visual
Computer 21, 8-10 (2005), 649-658.

[Lév06] LEVY B.: Laplace-Beltrami eigenfunctions: To-
wards an algorithm that understands geometry. In Shape
Modeling International (2006).

[MDSB02] MEYER M., DESBRUN M., SCHRODER P.,
BARR A.: Discrete differential geometry operators for
triangulated 2-manifolds. In Proceedings of Visual Math-
ematics (2002).

[NGHO4] NI X., GARLAND M., HART J. C.: Fair Morse
functions for extracting the topological structure of a sur-
face mesh. In TOG(SIGGRAPH) (2004), pp. 613-622.

[OFCDO02] OsADAR., FUNKHOUSER T., CHAZELLE B.,
DOBKIN D.: Shape distributions. 70G 21, 4 (2002), 807—
832.

(© The Eurographics Association 2007.



R. M. Rustamov / Laplace-Beltrami Shape Representation

[PP93] PINKALL U., POLTHIER K.: Computing discrete
minimal surfaces and their conjugates. Experiment. Math.
2,1(1993), 15-36.

[RWP0O5] REUTER M., WOLTER F.-E., PEINECKE N.:
Laplace-spectra as fingerprints for shape matching. In
Solid and Physical Modeling (2005), pp. 101-106.

[Sor06] SORKINE O.: Differential representations for
mesh processing.  Computer Graphics Forum 25, 4
(2006), 789-807.

[Tau95] TAUBIN G.: A signal processing approach to fair
surface design. In SIGGRAPH (1995), pp. 351-358.

[Tau0O] TAUBIN G.: Geometric signal processing on
polygonal meshes. In EUROGRAPHICS (2000).

[VLO7] VALLET B., LEVY B.: Spectral Geometry Pro-
cessing with Manifold Harmonics. Tech. rep., April 2007.

[XPB06] XU G., PAN Q., BAJAJ C. L.: Discrete surface
modelling using partial differential equations. Comput.
Aided Geom. Des. 23, 2 (2006), 125-145.

[XuO4a] Xu G.: Convergence of discrete Laplace-
Beltrami operators over surfaces. Comput. Math. Appl.
48, 3-4 (2004), 347-360.

[Xu04b] Xu G.: Discrete Laplace-Beltrami operators and
their convergence. Comput. Aided Geom. Des. 21, 8
(2004), 767-784.

[Xu06] Xu G.: Discrete Laplace-Beltrami operator on
sphere and optimal spherical triangulations. Int. J. Com-
put. Geometry Appl. 16, 1 (2006), 75-93.

[YBS06] YOSHIZAWA S., BELYAEV A., SEIDEL H.-P.:
Skeleton-driven Laplacian mesh deformations. Research
Report MPI-1-2006-4-005, Max Planck Institut Infor-
matik, Saarbruecken, October 2006.

[YZX*04] Yu Y., ZHou K., Xu D., SHI X., Bao H.,
Guo B., SHUM H.-Y.: Mesh editing with Poisson-based
gradient field manipulation. In TOG(SIGGRAPH) (2004),
pp. 644-651.

(© The Eurographics Association 2007.



