Large Mesh Deformation Using the Volumetric Graph Laplacian

Kun Zhou¹ Jin Huang^{2*} John Snyder³ Xinguo Liu¹ Hujun Bao² Baining Guo¹ Heung-Yeung Shum¹

¹ Microsoft Research Asia ² Zhejiang University ³ Microsoft Research

Presented by Bhaskar Kishore

Outline

- Introduction
- Related Work
- Deformation on Volumetric Graphs
- Deformation from 2D curves
- Results
- Conclusions

Outline

- Introduction
- Related Work
- Deformation on Volumetric Graphs
- Deformation from 2D curves
- Results
- Conclusions

- Large deformations are challenging
- Existing techniques often produce implausible results
- Observation
 - Unnatural volume changes
 - Local Self Intersection

- Volumetric Graph Laplacian
 - Represent volumetric details as difference between each point in a 3D volume and the average of its neighboring points in a graph.
 - Produces visually pleasing deformation results
 - Preserves surface details
- VGL can impose volume constraints
- Volumetric constraints are represented by a quadric energy function

- To apply VGL to a triangle mesh
 - Construct a volumetric graph which includes
 - Points on the original mesh
 - Points derived from a simple lattice lying inside the mesh
 - Points are connected by graph edges which are a superset of the edges of the original mesh
- Whats nice is that there is no need for volumetric tessellation.
- Deformations are specified by identifying a limited set of points – say a curve

11/21/2007 Bhaskar Kishore

- This curve can then be deformed to specify destination
- A quadric energy function is generated
 - Minimum maps the points to their specified destination
 - While preserving surface detail and roughly volume too

Contribution

- Demonstrate that problem of large deformation can be effectively solved by volumetric differential operator
 - Surface operators can be extended to solids by defining them on tetrahedral mesh
 - But that is difficult, constructing the tetrahedral mesh is hard
 - Existing packages remesh geometry and change connectivity
- That a volumetric operator can be applied to the easy to build Volumetric graph without meshing int.

Outline

- Introduction
- Related Work
- Deformation on Volumetric Graphs
- Deformation from 2D curves
- Results
- Conclusions

Related Work

- Freeform modeling [Botsch Kobbelt 2004]
- Curve based FFD [Sing and Fiume 1998]
- Lattice based FFD [Sederberg and Parry 1986]
- Displacement volumes [Botsch and Kobbelt 2003]
- Poisson meshes [Yu et al 2004]

Outline

- Introduction
- Related Work
- Deformation on Volumetric Graphs
- Deformation from 2D curves
- Results
- Conclusions

Deformation on Volumetric Graphs

- Let M = (V, K) be a triangular mesh
 - V = {p_i ∈ R³ | 1≤ i ≤ n}, is a set of n point position
 - K is a abstract simplicial complex containing three types of elements
 - Vertices {i}
 - Edges {i,j}
 - Faces {i,j,k}

- Suppose G = (P,E) is a graph
 - P {p_i ∈ R³ | 1≤ i ≤ N}, is a set of N point positions
 - $E = \{(i,j) \mid p_i \text{ is connected to } p_i\}$
- Then Laplacian coordinate δi of a point p

$$\delta_i = \mathcal{L}_G(p_i) = p_i - \sum_{j \in \mathcal{N}(i)} w_{ij} \, p_j, \tag{1}$$

where N (i) = { $j | \{i, j\} \in E\}$

ullet $L_{_G}$ is called the Laplace operator on graph G

- To control the deformation
 - User inputs deformed positions q_i , $i \in \{1, ..., m\}$ for a subset of the N mesh vertices
 - Compute a new (deformed) laplacian coordinate $\delta'i$ for each point i in the graph
 - Deformed positions of the mesh vertices p' is obtained by solving

$$\min_{p_i'} \left(\sum_{i=1}^N \| \mathcal{L}_G(p_i') - \delta_i' \|^2 + \alpha \sum_{i=1}^m \| p_i' - q_i \|^2 \right). \tag{2}$$

$$\min_{p_i'} \left(\sum_{i=1}^N \| \mathcal{L}_G(p_i') - \delta_i' \|^2 + \alpha \sum_{i=1}^m \| p_i' - q_i \|^2 \right). \tag{2}$$

- The first term represents preservation of local detail
- The second term constrains the position of those vertices directly specified by the user
- Alpha is used to balance these two objectives

Deformed Laplacian coordinates are computed via

$$\delta'_{i} = T_{i} \delta_{i}$$

- δ_i is the Laplacian in rest pose
- δ'_{i} is the Laplacian in the deformed pose
- T_i is restricted to rotation and isotropic scale
- Local transforms are propagated from the deformed region to the entire mesh

11/21/2007

- Build two graphs, G_{in} and G_{out}
- G_{in} prevents large volume changes
- G_{out} prevents local self-intersection
- G_{in} can obtained by tetrahedralizing the interior
 - Difficult to implement
 - Computationally expensive
 - Produces poorly shaped tetrahedra for complex models

Cons

- Build
- G_{in} (
- G_{out}
- G_{in} (
 - D
 - C
 - Pr

(a) Laplacian surface (c) VGL (b) Poisson mesh Figure 2: Large twist deformation. (a) Laplacian surface (b) Poisson mesh (c) VGL Figure 3: Large bend deformation.

terior

ex

11/21/2007

Algorithm

- Construct inner shell M_{in} for mesh M by offsetting each vertex a distance in the direction opposite to its Normal
- Embed M_{in} and M in a body-centered cubic lattice.
 Remove lattice nodes outside of M_{in}
- Build edge connections among M, M_{in}, and lattice nodes
- Simplify the graph using edge collapse and smooth the graph

1/21/2007 Bhaskar Kishore 20

 Construct inner shell M_{in} for mesh M by offsetting each vertex a distance in the direction opposite to its Normal

• Embed M_{in} and M in a body-centered cubic lattice. Remove lattice nodes outside of M_{in}

Figure 6: Types of edge connections in the volumetric graph.

 Build edge connections among M, M_{in}, and lattice nodes

 Simplify the graph using edge collapse and smooth the graph

- M_{in} ensures that inner points are inserted even in thin features that may be missed by lattice sampling.
- Question: how much of a step should one take to construct M_{in}?
- Use iterative method based on simplification envelopes [Cohen et al. 1996]

- M_{in} ensures that inner points are inserted even in thin features that may be missed by lattice sampling.
- Question: how much of a step should one take to construct M_{in}?
 - Use iterative method based on simplification envelopes [Cohen et al. 1996]

- Use iterative method based on simplification envelopes [Cohen et al. 1996]
 - At each iteration
 - Move each vertex a fraction of the average edge length
 - Test its adjacent triangles for intersection with each other and the rest of the model
 - If no intersections are found, accept step, else reject it
 - Iterations terminate when all vertices have moved desired distance or can no longer move

- Use iterative method based on simplification envelopes [Cohen et al. 1996]
 - At each iteration
 - Move each vertex a fraction of the average edge length
 - Test its adjacent triangles for intersection with each other and the rest of the model
 - If no intersections are found, accept step, else reject it
 - Iterations terminate when all vertices have moved desired distance or can no longer move

The BCC lattice

- Consists of nodes at every point of a Cartesian grid
- Additionally there are nodes at cell centers
- Node locations may be viewed as belong to two interlaced grids
- This lattice provides desirable rigidity properties as seen in crystalline structures in nature
- Grid interval set to average edge length

- Three types of edge connections for an initial graph
 - Each vertex in M is connected to its corresponding vertex in M_{in}. Shorter diagonal for each prism face is included as well.
 - Each inner node of the BCC lattice is connected with its eight nearest neighbors in the other interlaced grid
 - Connections are made between Min and nodes of the BCC lattice.
 - For each edge in the BCC lattice that intersects Min and has at least one node inside M_{in}, we connect the BCC lattice node inside M_{in} to the point in M_{in} closest to this intersection

Three types of edge connections for an initial

lattice node inside Min to the point in Min closest to this intersection

Bhaskar Kishore

- Simplification and Smoothing
 - Visit graph in increasing order of length
 - If length of an edge is less than a threshold, collapse it to edge's mid point
 - Threshold is half of average edge length of M
 - Apply iterative smoothing
 - Each point is moved to the average of its neighbors
 - Three smoothing operations in their implementation
 - No smoothing or simplification are applied to the vertices of original mesh M

- G_{out} can be constructed in a similar way to G_{in}
- M_{out} can be obtained by moving a small step in the normal direction.
- Connections for M_{out} can be made similar M_{in}
- Intersections between M_{in} and M_{out} and with M can occur, especially in meshes containing regions of high curvature.
 - They claim it does not cause any difficulty in our interactive system.

Deforming the Volumetric Graph

We modify equation (2) to include volumetric constraints

$$\sum_{i=1}^{n} \|\mathscr{L}_{M}(p_{i}') - \varepsilon_{i}'\|^{2} + \alpha \sum_{i=1}^{m} \|p_{i}' - q_{i}\|^{2} + \beta \sum_{i=1}^{N} \|\mathscr{L}_{G'}(p_{i}') - \delta_{i}'\|^{2}$$
(3)

Where the first n points in graph G belong the mesh M

- G' is a sub-graph of G formed by removing those edges belonging to M
- $-\delta'_{i}$ (1 ≤ i ≤ N) in G' are the graph laplcians coordinates in the deformed frame.
- For points in the original mesh M, ε' (1 ≤ i ≤ n) are the mesh laplacian coordinates in the deformed coordinate frame

Deforming the Volumetric Graph

$$\sum_{i=1}^{n} \|\mathcal{L}_{M}(p_{i}') - \varepsilon_{i}'\|^{2} + \alpha \sum_{i=1}^{m} \|p_{i}' - q_{i}\|^{2} + \beta \sum_{i=1}^{N} \|\mathcal{L}_{G'}(p_{i}') - \delta_{i}'\|^{2}$$
(3)

- β balances between surface and volumetric detail where β = nβ'/N.
- The n/N factor normalizes the weight so that it is insensitive to the lattice density
- $-\beta' = 1$ works well
- α is not normalized We want constraint strength to depend on the number of constrained points relative to the total number of mesh points

• 0.1 < α < 1, default is 0.2

Propagation of Local Transforms

- Local Transforms take the Laplacian coordinates in the rest frame to the deformed frame
- Use WIRE deformation method [Singh and Flume]
- Select a sequence of mesh vertices forming a curve
- Deform the curve.

- First determine where neighboring graph points deform to, then infers local transforms at the curve points, finally propagate the transforms over the whole mesh
- Begin by finding mesh neighbors of q_i and obtain their deformed positions using WIRE.
- Let C(u) and C'(u) be the original curve and the deformed curves parametrized by arc length u = [0,1]

- Given some neighboring point p ε R₃, let up ε [0,1] be the parameter vale minimizing distnace between p and the curve c(u).
- The deformation mapping p to p' such that C maps to C' is given by

$$p' = C'(u_p) + R(u_p) (s(u_p)(p - C(u_p))).$$

 R is a 3x3 rotation matrix taking the tangent vector t(u) on C and maps it to t'(u) on C' by rotating around t(u)xt'(u)

38

$$p' = C'(u_p) + R(u_p) (s(u_p)(p - C(u_p))).$$

- s(u) is a scale factor
 - Computed at each curve vertex as the ratio of the sum of lengths of its adjacent edges in C' over this length in C
 - It is then defined continuously over u by liner interpolation
- Above equation gives us deformed coordinates for each point in the curve and its 1 Ring neighborhood

11/21/2007

$$p' = C'(u_p) + R(u_p) (s(u_p)(p - C(u_p))).$$

- Transformations are propagated from the control curve to all graph points p via a deformation strength field f(p)
- f(p) decays away from the deformation site.
 - Constant
 - Linear
 - Gaussian
 - Based on shortest edge path from p to the curve

11/21/2007 Bhaskar Kishore 40

$$p' = C'(u_p) + R(u_p) (s(u_p)(p - C(u_p))).$$

- A rotation is defined by
 - Computing a normal and tangent vector as the perpendicular projection of one edge vector with this normal
 - Normal is computed as a linear combination weighted by face area of face normals around mesh point i
 - Rotation is represented as a quaternion
 - Angle should be less than 180

$$p' = C'(u_p) + R(u_p) (s(u_p)(p - C(u_p))).$$

- The simplest propagation scheme is to assign to p a rotation and scale from the point q_p on the control curve closest to p
- Smoother results are obtained by computing a weighted average over all the vertices on the control curve instead of the closest

$$\exp\left(-\frac{(\|p-q_i\|_g - \|p-q_p\|_g)^2}{2\sigma^2}\right)$$

$$p' = C'(u_p) + R(u_p) (s(u_p)(p - C(u_p))).$$

- Weighting over multiple curves is similar, we accumulate values over multiple curves
- Final transformation matrix is given by

$$T_p = f(p)\,\tilde{T}_p + (1 - f(p))I$$

Weighting Scheme

- They drop uniform weighting in favor of another scheme that provides better results
- For mesh Laplacian L_m, use cotangent weights

$$w_{ij} \propto (\cot \alpha_{ij} + \cot \beta_{ij}),$$

where $\alpha_{ij} = \angle (p_i, p_{j-1}, p_j)$ and $\beta_{ij} = \angle (p_i, p_{j+1}, p_j).$

 For graph Laplacian, compute weights by solving a quadratic programming problem

Weighting Scheme

• For each graph vertex i, to obtain weights w

solve
$$\min_{w_j} \left(\|p_i - \sum_{j \in \mathcal{N}(i)} w_j p_j\|^2 + \lambda \left(\sum_{j \in \mathcal{N}(i)} w_j \|p_i - p_j\| \right)^2 \right)$$

subject to
$$\sum_{j \in \mathcal{N}(i)} w_j = 1$$
 and $w_j > \xi$.

- The first term generates Laplacian coordinates of smallest magnitude
- Second term is based on scale dependent umbrella operator which prefers weight in proportion to inverse of edge length
- Lamba balances the two objects (set to 0.01)
- Zeta prevents small weights (set to 0.01)

Weighting Scheme

Quadric Energy Minimization

To minimize energy in equation (3) we solve the following equations

$$\mathscr{L}_M(p_i') + \beta \mathscr{L}_{G'}(p_i') = \varepsilon_i' + \beta \delta_i', \quad i \in 1,...,n,$$
 $\beta \mathscr{L}_{G'}(p_i') = \beta \delta_i', \quad i \in n+1,...,N,$ $\alpha p_i' = \alpha q_i', \quad i \in 1,...,m$

- Above equations represent a sparse linear system Ax = b
- Matrix A is only dependent on the original graph and A⁻ can be precomputed using LU decomposition
- B depends on current Laplacian coordinates and changes during interactive deformation

Multi resolution Methods

- Solving a the linear system of a large complex model is expensive
- Generate a simplified mesh [Guskov et al. 1999]
- Deform this mesh and then add back the details to obtain high resolution deformed mesh

Outline

- Introduction
- Related Work
- Deformation on Volumetric Graphs
- Deformation from 2D curves
- Results
- Conclusions

Method

- User defines control curve by selecting sequence points on the mesh which are connected by the shortest edge path (dijkstra)
- This 3D curve is projected onto one or more planes
- Editing is done in these planes
- The deformed curve is projected back into 3D, which then forms the basis of the deformation process

Curve Projection

- Given a curve, the system automatically selects projection planes base on its average normal and principal vectors.
- Principal vectors are computed as the two eigen vectors corresponding to the largest eigen values from a principal component analysis
- In most cases, cross product of the average normal and the first principal vector provide a satisfactory plane
- If length of average normal vector is small, then use only two principal vectors instead

Curve Editing

- Projected 2D curves inherit geometric detail from original mesh that complicates editing
- They use an editing method for discrete curves base on Laplacian coordinates
- Laplacian coordinate of a curve vertex is the difference between its position and the average position of its neighbors or a single neighbor in cases of terminal vertices
- Denote the 2D curve to be edited as C
- A cubic B-Spline curve C_b is first computed as a least
 squares fit to C. This represents the low frequencies of C

Curve Editing

- A discrete version of C_b, C_d is computed by mapping each vertex of C onto C_b using proportional arc length mapping
- We can not edit the discrete version conveniently
- After editing we obtain $C'_{\rm b}$ and $C'_{\rm d}$. These curves lack the original detail of the $C_{\rm b}$
- To restore detail, at each vertex of C we find a the unique rotation and scale that maps its location from C_d to C'_d
- Applying these transformations to the Laplacian coordinates and solving equation (2) without the constraint term

$$\min_{p_i'} \left(\sum_{i=1}^N \| \mathcal{L}_G(p_i') - \delta_i' \|^2 + \alpha \sum_{i=1}^m \| p_i' - q_i \|^2 \right). \tag{2}$$

- Deformation Re-targeting from 2D Cartoons
 - An application of 2D sketch based deformation
 - Users specify one or more 3D control curves on the mesh along with their project planes and for each curves a series of 2D curves in the cartoon image sequence that drive its deformation
 - It is not necessary to generate a deformation from scratch at every time frame. Users can select a curves in a few key frames of the cartoon
 - Automatic interpolation technique based on differential coordinates is used to interpolate between key frame

- Deformation Re-targeting from 2D Cartoons
 - Say we have two meshes M and M' at two different key frames
 - Compute the Laplacian coordinates for each vertex in the two meshes
 - A rotation and scale in the local neighborhood of each vertex p is computed taking the Laplacian coordinates from its location in M to M'
 - Denote the transform as T_p . Interpolate T_p over time to transition from M to M'
 - 2D cartoon curves are deformed in a single plane, this allows for extra degrees of freedom if required by the user

Deformation Re-targeting from 2D Cartoons

Deformation Re-targeting from 2D Cartoons

Outline

- Introduction
- Related Work
- Deformation on Volumetric Graphs
- Deformation from 2D curves
- Results
- Conclusions

Results

Some stats

	arma	dino	cat	lioness	dog
# mesh vertices	15,002	10,002	7,207	5,000	10,002
# graph points	28,142	15,895	14,170	8,409	17,190
graph generation	2.679s	1.456s	1.175s	1.367s	1.348s
LU decomposition	0.524s	0.286s	0.348s	0.197s	0.118s
back substitution	0.064s	0.028s	0.030s	0.019s	0.011s
# control curves	6	5	4	5	
# key frames	10	9	8	8	
session time (min)	~120	~90	~30	~90	

Table 1: Statistics and timing.

More results

More results

Figure 12: Deformation transfer from Goofy to armadillo. ©Disney

Figure 13: Deformation transfer from a kicking cat to dinosaur.

Outline

- Introduction
- Related Work
- Deformation on Volumetric Graphs
- Deformation from 2D curves
- Results
- Conclusions

Conclusions

- They proposed a system which would address volumetric changes and local self intersection based on the volumetric graph Laplacian
- The solution avoids the intricacies of solidly meshing complex objects
- Presented a system for retargetting 2D animations to 3D
- Note, that their system does not address global self intersections – those must addressed by the user

Bhaskar Kishore