Harmonic Coordinates for Character Articulation

PIXAR

Pushkar Joshi
Mark Meyer
Tony DeRose
Brian Green
Tom Sanocki
• We have a complex source mesh inside of a simpler cage mesh

• We want vertex deformations applied to the cage to be applied appropriately to the source mesh
Mean Value Coordinates

Ju, Schaefer, Warren, 2005

\[p' = \sum_{i} g_i(p)C_i' \]

- \(p' \): New object vertices
- \(g_i(p) \): Mean value coordinate Weighting functions
- \(C_i' \): Deformed cage vertices
To compute $g_i(p)$ for each interior point p:
- Consider each point x on the boundary
- Multiply $f(x)$ by the reciprocal distance from x to p
- Average over all x

From the Ju paper:

$$g(p) = \frac{\int_x w(x, v) f(x) dS_p}{\int_x w(x, v) dS_p}$$

where

$$w(x, p) = \frac{1}{|x - p|}$$

and

S_p is the unit sphere centered at p
To compute $g_i(p)$ for each interior point p:
- Consider each point x on the boundary
- Multiply $f(x)$ by the reciprocal distance from x to p
- Average over all x

Good things:
- Topological flexibility in designing the cage (any closed tri-mesh)
- Deformations are smooth
- Functions are linear, so no popping

Bad things:
- Does not respect the visibility of x from p
- If a cage vertex has a negative weight associated with it, then the object vertex and cage vertex will move in opposite directions
Mean Value Coordinate Field

Desired Coordinate Field
• Instead, let’s average over all Brownian paths leaving p
 – This will consider the visibility of x from p
 – Essential for any concave mesh

• Interestingly enough…
 – This is the same as solving Laplace’s equation

\[\Delta h_i(p) = 0 \quad p \in \text{Interior}(C) \]

Solve for every cage vertex p

Let us first approach things in two dimensions
Boundary conditions:

- Let \(\partial p \) denote a point on the boundary \(\partial C \) of \(C \)
- Then:

\[
h_i(\partial p) = \phi_i(\partial p), \quad \text{for all} \quad \partial p \in \partial C
\]

where

\[
\phi_i(\partial p) \quad \text{is the piecewise linear function such that} \quad \phi_i(C_j) = \delta_{i,j}
\]
Properties:

- Interpolation
 \[h_i(C_j) = \delta_{i,j} \]

- Smoothness
 The functions \(h_i(p) \) are smooth in the interior of the cage

- Non-negativity
 \[h_i(p) \geq 0 \quad \text{for all} \quad p \in C \]

- Interior locality
 Interior locality holds if we have the non-negativity property and no interior extrema

- Linear reproduction
 Given an arbitrary \(f(p) \), the coordinate functions can be used to define:
 \[
 H[f](p) = \sum_i h_i(p)f(C_i)
 \]
 This is the ‘no popping’ condition
Properties:

 - Affine invariance
 \[
 \sum_{i} h_i(p) = 1 \quad \text{for all}\quad p \in C
 \]

 - Generalization of barycentric coordinates
 \[h_i(p) \] is the barycentric coordinate of \(p \) with respect to \(C_i \)
Interpolation:

\[h_i(C_j) = \phi_i(C_j) = \delta_{i,j} \]

Smoothness:

Away from the boundary, harmonic coordinates are solutions, so they are smooth in the cage interior.

On the boundary, they are only as smooth as the boundary conditions.

Non-negativity:

Harmonic functions achieve extreme at their boundaries.

Boundary values are restricted to \([0,1]\).

So interior values are restricted to \([0,1]\).

Interior locality:

Harmonic functions possess no interior extrema.
Linear reproduction:

This holds for everywhere on the boundary of \(C \), by definition:

\[H[f](\partial p) = \sum_i h_i (\partial p) f(C) = \sum_i \phi_i (\partial p) f(C) \]

Since \(f(p) \) is linear, second derivatives vanish, ie:

\[\nabla^2 f(p) = 0 \]

and \(f(p) \) satisfies Laplace’s equation on the interior of \(C \)

Since \(H[f](p) \) is a linear combination of harmonic functions, it also satisfies Laplace’s equation

Use proof by induction to generalize to any \(n \)-dimension
Results

<table>
<thead>
<tr>
<th>Cage Vertices</th>
<th>325</th>
<th>112</th>
<th>39</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object Vertices</td>
<td>9775</td>
<td>8019</td>
<td>269</td>
<td>136</td>
</tr>
<tr>
<td>Grid resolution</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Solve time</td>
<td>57.4</td>
<td>17.6</td>
<td>5.85</td>
<td>0.83</td>
</tr>
<tr>
<td>Pose time</td>
<td>0.111</td>
<td>0.026</td>
<td>0.0001</td>
<td>0.0007</td>
</tr>
<tr>
<td>Solution size (MB)</td>
<td>9.2</td>
<td>3.7</td>
<td>0.32</td>
<td>0.048</td>
</tr>
</tbody>
</table>

Error: < 0.005

Total footprint: < 90MB
Future Work:

- Compute the harmonic coordinates for each cage vertex independently and in parallel

- Better solvers (currently using MultiGrid)

- Octrees

- Localize re-solves