Drag and Drop Pasting

Jiaya Jia, Jian Sun, Chi-Keung Tang, Heung-Yeung Shum

The Chinese University of Hong Kong
Microsoft Research Asia
The Hong Kong University of Science and Technology

Presented By
Bhaskar Kishore

10/8/07
Outline

- Introduction
- Related Work
- Optimal Boundary
 - Poisson Image Editing
 - Boundary Energy Minimization
 - Shortest Closed Path Algorithm
- Fractional Boundary
 - Blended Guidance Field
- Results
- Conclusions
Outline

- Introduction
- Related Work
- Optimal Boundary
 - Poisson Image Editing
 - Boundary Energy Minimization
 - Shortest Closed Path Algorithm
- Fractional Boundary
 - Blended Guidance Field
- Results
- Conclusions
Introduction

- Problem
 - For Poisson Image Editing to work well user must carefully draw boundary on source image
 - Poisson Image Editing may generate unnatural blurring artifacts
Introduction

- Proposed
 - A new objective function to compute an optimized boundary
 - A blend guidance field to integrate an alpha matte into the Poisson equation to preserve fractional boundary
Outline

- Introduction
- Related Work
- Optimal Boundary
 - Poisson Image Editing
 - Boundary Energy Minimization
 - Shortest Closed Path Algorithm
- Fractional Boundary
 - Blended Guidance Field
- Results
- Conclusions
Related Work

- Poisson Image Editing [Perez et al. 2003]
- Image Stitching in the Gradient Domain [Levin et al. 2004]
- Interactive Digital Photomontage [Agarwala et al. 2004]
- Multi-resolution spline technique [Burt & Adelson 1983]
Outline

- Introduction
- Related Work
- Optimal Boundary
 - Poisson Image Editing
 - Boundary Energy Minimization
 - Shortest Closed Path Algorithm
- Fractional Boundary
 - Blended Guidance Field
- Results
- Conclusions
Outline

- Introduction
- Related Work
- Optimal Boundary
 - Poisson Image Editing
 - Boundary Energy Minimization
 - Shortest Closed Path Algorithm
- Fractional Boundary
 - Blended Guidance Field
- Results
- Conclusions
Poisson Image Editing

• Minimizing Problem [Perez et al. 2003]

 \[
 \min_\mathcal{F} \int_{p \in \Omega_0} | \nabla f - v|^2 dp \quad \text{with} \quad f|_{\partial \Omega_0} = f_t|_{\partial \Omega_0}, \quad (1)
 \]

 where \(v = \nabla f_s \)

 • Denote \(f' = f - f_s \), equation (1) becomes

 \[
 \min_{f'} \int_{p \in \Omega_0} | \nabla f'|^2 dp \quad \text{with} \quad f'|_{\partial \Omega_0} = (f_t - f_s)|_{\partial \Omega_0}. \quad (2)
 \]

 • The associated Laplace equation is:

 \[
 \Delta f' = 0 \quad \text{with} \quad f'|_{\partial \Omega_0} = (f_t - f_s)|_{\partial \Omega_0}, \quad (3)
 \]

 where \(\Delta = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) \) is the Laplacian operator
Poison Image Editing

\[
\min_{f'} \int_{p \in \Omega_0} |\nabla f'|^2 dp \text{ with } f'|_{\partial \Omega_0} = (f_t - f_s)|_{\partial \Omega_0}. \quad (2)
\]

- **Important Property of equation 2**
 - Variational energy \(\Omega_0 |\nabla f|^2 \) will approach zero if and only if all boundary pixels satisfy \((f_t - f_s)|_{\partial \Omega_0} = k\), where k is some constant value [Zwillinger 1997]
 - Important as less variation in color along the boundary produces better results in the compositing operation
Poisson Image Editing

\[
\min_{f'} \int_{p \in \Omega_0} |\nabla f'|^2 dp \quad \text{with} \quad f'|_{\partial \Omega_0} = (f_t - f_s)|_{\partial \Omega_0}.
\]
Introduction

Related Work

Optimal Boundary
 • Poisson Image Editing
 • Boundary Energy Minimization
 • Shortest Closed Path Algorithm

Fractional Boundary
 • Blended Guidance Field

Results

Conclusions
Before Boundary Energy Minimization

- **Optimal Boundary**
 - Where is this optimal boundary $\partial \Omega$?
 - Has to be inside the region of interest Ω_0
 - It also has to be outside the object of interest Ω_{obj}
 - Use GrabCut [Rother et al. 2004] to automatically compute Ω_{obj}

![Diagram showing the regions Ω, Ω_0, Ω_{obj}, and the boundary $\partial \Omega$.]
Boundary Energy Minimization

- To reduce the color variance along the boundary the following objective function is minimized:

\[E(\partial \Omega, k) = \sum_{p \in \partial \Omega} ((f_t(p) - f_s(p)) - k)^2, \text{ s.t. } \Omega_{obj} \subset \Omega \subset \Omega_0, \] (4)

- Where
 - \(f(p) \) is a ternary set in \{r,g,b\} space
 - \(f(p) - f(q) \) is computed as L2 Norm
Boundary Energy Minimization

- Iterative Optimization

1. Initialize Ω as Ω_0

2. Take derivative of equation 4 and equate to zero. Solve for K.

$$ \frac{\partial E(\partial \Omega, k)}{\partial k} = 0 $$

$$ \iff k = \frac{1}{|\partial \Omega|} \sum_{p \in \partial \Omega} (f_i(p) - f_s(p)),$$ (5)

where $|\partial \Omega|$ is length of the boundary $\partial \Omega$

3. Given the current K, optimize the boundary $\partial \Omega$.

4. Repeat steps 2 and 3 until the energy does not decrease in successive iterations
Boundary Energy Minimization

- Iterative Optimization

1. Initialize Ω as Ω_0

2. Take derivative of equation 4 and equate to zero. Solve for K

$$\Leftrightarrow k = \frac{\|f_s(p)\|}{|\partial \Omega|}$$

where $|\partial \Omega|$ is the length of the boundary $\partial \Omega$

3. Given the current K, optimize the boundary $\partial \Omega$.

4. Repeat steps 2 and 3 until the energy does not decrease in successive iterations.
Outline

• Introduction
• Related Work
• Optimal Boundary
 • Poisson Image Editing
 • Boundary Energy Minimization
 • Shortest Closed Path Algorithm
• Fractional Boundary
 • Blended Guidance Field
• Results
• Conclusions
Shortest Closed Path

- Assume a graph G
 - Nodes in G are pixels within the band $\Omega - \Omega_{obj}$
 - Edges represent 4-connectivity relationships between neighboring pixels
 - Cost on each node is defined as $((f_t(p) - f_s(p)) - K)^2$
 - Region Ω_{obj} can be considered as genus 0
 - Region $\Omega_0 \setminus \Omega_{obj}$ can be considered as genus 1
Finding Shortest path is difficult as $\partial \Omega$ is a closed curve enclosing Ω_{obj}

We therefore change region $\Omega_0 \setminus \Omega_{\text{obj}}$ from genus 1 to genus 0 by introducing cut C.
Shortest Closed Path

• Cut C
 • Compute shortest straight line segment among all pixel pairs for $\partial\Omega_{\text{obj}}$ and $\partial\Omega_0$.

• Benefits of this approach
 • Short length reduces probability that optimal boundary passes the cut more than once
 • Speeds up computation.
Shortest Closed Path

- Shortest Closed Path Algorithm
 - For each pixel P on one side of the cut (Marked Yellow) compute Shortest paths to all adjacent pixels on the other side (Shown in Blue).
 - Use 2D Dynamic programming [Dijkstra 1959; Mortensen and Barrent 1995] to compute paths.
 - $O(N)$ where N is the number of pixels in the band.
 - Repeat process for all pixels on yellow side of cut C.
 - We obtain a set of Paths.
 - Optimized boundary $\partial \Omega$ is assigned to the path with globally minimum cost.
 - Assuming there are M yellow pixels, overall complexity is $O(MN)$.
Outline

- Introduction
- Related Work
- Optimal Boundary
 - Poisson Image Editing
 - Boundary Energy Minimization
 - Shortest Closed Path Algorithm
- Fractional Boundary
 - Blended Guidance Field
- Results
- Conclusions
Fractional Boundary

- Problem is optimized boundary may intersect with an object with fractional boundary and break up subtle and fine details.

![Diagram showing fractional boundary interactions](image)
Blended Guidance Field

• Solution is to incorporate an alpha matt into the guidance field for Poisson equations

• To do this we must detect regions in which alpha blending should be computed

• Define binary coverage mask M to indicate where alpha blending should be applied.
Blended Guidance Field

- Denote $\Phi = \{ p | 0 < \alpha(p) < 1 \}$ as the fractional object boundary.
- α is computed automatically within a few pixels surrounding Ω_{obj} using coherence matting [Shum et al. 2004].

Φ is the shape of the narrow blue belt.
Blended Guidance Field

- Now the blended guidance field $v' = (v'_x, v'_y)$

- For each pixel $p = (x,y)$, $v'_x(x,y)$ is defined as

$$v'_x(x,y) = \begin{cases}
\nabla_x f_s(x,y) & M(x,y) = M(x + 1, y) = 0 \\
\n\nabla_x (\alpha f_s + (1 - \alpha) f_t) & M(x,y) = M(x + 1, y) = 1 \\
0 & M(x,y) \neq M(x + 1, y)
\end{cases}$$

- To construct M
 - Compute head and tail intersections b/w $\partial \Omega$ and belt Φ (Red Dots)
 - Compute the nearest point on the other side of belt Φ. This gives us the green region in which blending must be applied.
 - Set $\{p|M(p) = 1\}$ in green region and $M(p) = 0$ in remaining pixels of p in $\Omega \cup \Phi$
Blended Guidance Field

- Now the blended guidance field $v' = (v'_x, v'_y)$

- For each pixel $p = (x, y)$, $v'_x(x, y)$ is defined as:

$$v'_x(x, y) = \begin{cases} \nabla_x \text{grad} & \\ \text{if } x \notin \partial \Omega \text{ and } x \notin \Phi (\text{Red Dots}) & \\ 0 & \text{otherwise} \end{cases}$$

- To construct M:
 - Compute head and tail intersections between $\partial \Omega$ and belt Φ. (Red Dots)
 - Compute the nearest point on the other side of belt Φ. This gives us the green region in which blending must be applied.
 - Set $\{p | M(p) = 1\}$ in green region and $M(p) = 0$ in remaining pixels of p in $\Omega \cup \Phi$
Outline

- Introduction
- Related Work
- Optimal Boundary
 - Poisson Image Editing
 - Boundary Energy Minimization
 - Shortest Closed Path Algorithm
- Fractional Boundary
 - Blended Guidance Field
- Results
- Conclusions
Results
Results
Results

Figure 2: Example of results. (a) shows the original image, (b) shows the detected object, (c) shows the refined detection, (d) shows the final result, and (e) shows the comparison with the ground truth.
Results
Outline

- Introduction
- Related Work
- Optimal Boundary
 - Poisson Image Editing
 - Boundary Energy Minimization
 - Shortest Closed Path Algorithm
- Fractional Boundary
 - Blended Guidance Field
- Results
- Conclusions
Conclusions

- Proposed a user friendly approach to achieve seamless image composition without requiring careful initialization by user.
- A system which is more practical and easy to use.
- The approach preserves fractional boundary by introducing blended guidance field.
- User interaction is only required if there is a large error in computing Ω_{obj}.