Interpolating and Approximating Implicit Surfaces from Polygon Soup

Chen Shen James F. O'Brien Jonathan R. Shewchuk

Presented by Yuan Chen

Outline

- Overview
- Algorithm
- Value Constraints
- Normal Constraints
- Interpolation and Approximation
- Preprocessing
- Results & Discussion

Overview

- Input: Arbitrary set of polygons

 holes, gaps, self-intersections, non-manifold
- Output: implicit surfaces
 -- watertight, with some other nice properties.

Algorithm

- Use MLS to generate the implicit surface
- Enforce true normal constraints
- Adjust the implicit surface to fit tightly around the input polygons and enclose all input vertices.
- A hierarchical fast evaluation scheme
- Optional preprocessing

Value Constraints at Points

- N points located at positions p_i , $i \in [1...N]$
- Build a function f(x) which approximates the values ϕ_i at those points
- b(x) is the vector of basis functions
- $lue{c}$ is the unknown vector of coefficients

Value Constraints at Points

Standard least-squares fit:

Value Constraints over Polygons

• MLS formulation for point constraints:
$$B^{T}(W(x))^{2}Bc(x) = B^{T}(W(x))^{2}\phi$$

$$\bigcup_{i=1}^{N} w^{2}(x, p_{i})b(p_{i})b^{T}(p_{i}) c(x) = \sum_{i=1}^{N} w^{2}(x, p_{i})b(p_{i})\phi_{i}$$

Value Constraints over Polygons

Integrate value constraints over K polygons,
$$\Omega_k, k \in [1...K]:$$

$$\left(\sum_{i=1}^N w^2(x, p_i)b(p_i)b^T(p_i)\right)c(x) = \sum_{i=1}^N w^2(x, p_i)b(p_i)\phi_i$$

$$\left(\sum_{k=1}^K A_k\right)c(x) = \sum_{k=1}^K a_k, \quad A_k = \int_{\Omega_k} w^2(x, p)b(p)b^T(p)dp$$

$$a_k = \int_{\Omega_k} w^2(x, p)b(p)\phi_k dp$$

Normal Constraints One of popular normal constraints: pseudonormal constraints: [Turk and O'Brien, 1999] -- A zero constraint at a point on the surface; A positive constraint offset slightly outside the surface A negative one slightly inside -- This approach does not work well. . an essential singularity at that point. . undesirable oscillatory

Normal Constraints • A function S(x) associated with polygon Ω_k is defined, with normal constraints: $S_k(x) = \phi_k + (x - q_k)^T \tilde{n}_k$ $= \psi_{ok} + \psi_{xk} x + \psi_{yk} y + \psi_{zk} z$ $\mathbf{j}^{\mathbf{n}}$ is the normal of polygon, $\mathbf{j}^{\mathbf{n}}$ is an arbitrary point on the polygon. • These functions are blended using MLS instead of constant values.

Building Interpolating and Approximating Implicit Surfaces from Polygon Soup

Chen Shen James F. O'Brien Jonathan R. Shewchuk University of California, Berkeley

SIGGRAPH 2004