Three-Dimensional α Shapes
Herbert Edelsbrunner and Ernst P. M"ucck
ACM Tran. Graph. 13(1), 1994

Presented by Matthew Bolitho

20 September 2005
1 Theory
 - Background
 - Intuition
 - Definition
 - Delaunay Triangulation

2 Implementation
 - α-Complexes
 - Edelsbrunner’s Algorithm

3 Applications
 - Properties
 - Surface Reconstruction
Question

Given a set of points, how can we determine its “shape”?
Question

Given a set of points, how can we determine its “shape”?

- The convex hull
Question

Given a set of points, how can we determine its “shape”?

- The convex hull
- Something else?
Question

Given a set of points, how can we determine its “shape”?

- The convex hull
- Something else?
- The α-shape
\(\alpha \)-Shapes

- A generalisation of the convex hull
\(\alpha\)-Shapes

- A generalisation of the convex hull
- The \(\alpha\)-shape is actually a family of shapes, parameterised by the \(\alpha\) value
A generalisation of the convex hull

The α-shape is actually a family of shapes, parameterised by the α value

- As $\alpha \rightarrow \infty$, the α-shape is the convex hull
- As $\alpha \rightarrow 0$, the α-shape is the point set S
α-Shapes

- A generalisation of the convex hull
- The α-shape is actually a family of shapes, parameterised by the α value
 - As $\alpha \to \infty$, the α-shape is the convex hull
 - As $\alpha \to 0$, the α-shape is the point set S
 - Other values for α give shapes somewhere in-between
A generalisation of the convex hull

The \(\alpha \)-shape is actually a family of shapes, parameterised by the \(\alpha \) value

- As \(\alpha \rightarrow \infty \), the \(\alpha \)-shape is the convex hull
- As \(\alpha \rightarrow 0 \), the \(\alpha \)-shape is the point set \(S \)
- Other values for \(\alpha \) give shapes somewhere in-between

\(\alpha \)-shape may be concave or disjoint
α-Shapes

Figure from Edelsbrunner94

Presented by Matthew Bolitho

Three-Dimensional α Shapes
Imagine a spherical scoop, with size α.

- Imagine a spherical scoop, with size α.

Presented by Matthew Bolitho Three-Dimensional α Shapes
Imagine a spherical scoop, with size α.

P defines a set of points in space that the scoop cannot pass through.
Imagine a spherical scoop, with size α.

P defines a set of points in space that the scoop cannot pass through.

The general idea is to carve out as much of space as possible:
Imagine a spherical scoop, with size α.

P defines a set of points in space that the scoop cannot pass through.

The general idea is to carve out as much of space as possible:

- There are places that the scoop is blocked
 - i.e. $|p_i - p_j| < \alpha, i \neq j$
 - At these positions there are at least d points in P touching the scoop.
- An edge of the α-shape is defined by connecting those points.
Imagine a spherical scoop, with size α.

P defines a set of points in space that the scoop cannot pass through.

The general idea is to carve out as much of space as possible:
- There are places that the scoop is blocked
 i.e. $|p_i - p_j| < \alpha$, $i \neq j$
 At these positions there are at least d points in P touching the scoop.
- An edge of the α-shape is defined by connecting those points.
- Then boundary of the α-shape is a collection of these edges
Let $P \subset \mathbb{R}^d$ be a set of n points
Let $P \subset \mathbb{R}^d$ be a set of n points.

Let $S_\alpha(P)$ be the α-shape of P for a given α value.
For simplicity, we assume that P is in \textit{general position} form:
For simplicity, we assume that P is in \textit{general position} form:

- No 4 points in P may lie in the same line
For simplicity, we assume that P is in *general position* form:

- No 4 points in P may lie in the same line
- No 5 points in P may lie on the same sphere
For simplicity, we assume that P is in *general position* form:

- No 4 points in P may lie in the same line
- No 5 points in P may lie on the same sphere
- For a fixed α, the smallest sphere through any 2, 3 or 4 points in P has a radius different to α
For simplicity, we assume that P is in *general position* form:

- No 4 points in P may lie in the same line
- No 5 points in P may lie on the same sphere
- For a fixed α, the smallest sphere through any 2, 3 or 4 points in P has a radius different to α

This allows us to ignore special cases
Let $B_\alpha(p)$ be an open half ball with radius α covering a space p for $0 \leq \alpha \leq \infty$, $p \subset \mathbb{R}^d$.

α-balls

Presented by Matthew Bolitho

Three-Dimensional α Shapes
\(\alpha \)-balls

Let \(B_\alpha(p) \) be an open half ball with radius \(\alpha \) covering a space \(p \) for \(0 \leq \alpha \leq \infty \), \(p \subset \mathbb{R}^d \)

- \(B_0(p) \) is the point \(p \)
- \(B_\infty(p) \) is the half-space \(p \)
\(\alpha\)-balls

Let \(B_\alpha(p)\) be an open half ball with radius \(\alpha\) covering a space \(p\) for \(0 \leq \alpha \leq \infty\), \(p \subset \mathbb{R}^d\)

- \(B_0(p)\) is the point \(p\)
- \(B_\infty(p)\) is the half-space \(p\)

\(B_\alpha(p)\) is empty if \(p \cap P = 0\)
An \(n \)-simplex is an \(n \)-dimensional analogue of a triangle:
- The 0-simplex is a point
- The 1-simplex is a line
- The 2-simplex is a triangle
- The 3-simplex is a tetrahedron

A \(n \)-simplex has \(n + 1 \) vertices
Let \(T \subset P \), and \(|T| = k + 1 \leq d + 1 \)

The polytope \(\triangle_T = \text{conv}(T) \) has dimension \(k \) and is therefore a \(k \)-simplex
Exposed Simplices

Let δp be the surface of $B_\alpha(p)$

A k-simplex \triangle_T is said to be exposed if there is an empty $B_\alpha(p)$ where $T \in \delta p$
Exposed Simplices

Let δp be the surface of $B_\alpha(p)$

A k-simplex \triangle_T is said to be exposed if there is an empty $B_\alpha(p)$ where $T \in \delta p$
Building the α-shape

- $S_\alpha(P)$ is constructed from all exposed simplices:

$$\delta S_\alpha(P) = \{ \triangle_T | T \subset P, |T| \leq d \text{ and } \triangle_T \text{ is exposed} \}$$
Observations

It is easy to show:

\(\lim_{\alpha \to \infty} S_\alpha(P) \) is the convex hull of \(P \)

\(\lim_{\alpha \to 0} S_\alpha(P) \) is the original set \(P \)
Observations

It is easy to show:

- \(\lim_{\alpha \to \infty} S_\alpha(P) \) is the convex hull of \(P \)
- \(\lim_{\alpha \to 0} S_\alpha(P) \) is the original set \(P \)

Claim

\(S(\alpha) \) is a subset of the Delaunay triangulation of \(P \)
Let $DT(P)$ be a set of k-simplices $0 \leq k \leq d$ such that
$\triangle_T = \text{conv}(T), \ T \subset P, \ |T| = k + 1$
Let $DT(P)$ be a set of k-simplices $0 \leq k \leq d$ such that
\[\triangle_T = \text{conv}(T), \; T \subset P, \; |T| = k + 1 \]

- For $k = d$, an α-ball $B_\alpha(p)$ coincides with the circumsphere of \triangle_T
Let $DT(P)$ be a set of k-simplices $0 \leq k \leq d$ such that $\triangle_T = \text{conv}(T)$, $T \subset P$, $|T| = k + 1$

- For $k = d$, an α-ball $B_\alpha(p)$ coincides with the circumsphere of \triangle_T
- By definition, this does not contain any other points from P, therefore $B_\alpha(p)$ is empty
Let $DT(P)$ be a set of k-simplices $0 \leq k \leq d$ such that
\[\triangle_T = \text{conv}(T), \ T \subset P, \ |T| = k + 1 \]

- For $k = d$, an α-ball $B_\alpha(p)$ coincides with the circumsphere of \triangle_T
- By definition, this does not contain any other points from P, therefore $B_\alpha(p)$ is empty
- Thus the simplices that form the edges of the d-simplex are exposed, and form the boundary for some α-shape.
In order to compute the α-shape, we use the α-complex.
In order to compute the α-shape, we use the α-complex. The α-complex is a simplicial complex that is a subset of $DT(P)$.

Presented by Matthew Bolitho

Three-Dimensional α Shapes
In order to compute the α-shape, we use the α-complex. The α-complex is a simplicial complex that is a subset of $DT(P)$. The subset of $DT(P)$ is determined by α.

Presented by Matthew Bolitho
Three-Dimensional α Shapes
Definitions

Let σ_T be the radius of the circumsphere of a simplex $\triangle T$
Definitions

Let σ_T be the radius of the circumsphere of a simplex $\triangle T$

Let μ_T be the center of the circumsphere of a simplex $\triangle T$
Definitions

Let σ_T be the radius of the circumsphere of a simplex \triangle_T

Let μ_T be the center of the circumsphere of a simplex \triangle_T

- A simplex \triangle_T from $DT(P)$ is in $C_\alpha(P)$ if either:
 - $\sigma_T < \alpha$ and the α-ball at μ_T is empty
 - \triangle_T is the face of another \triangle_T in $C_\alpha(P)$
Description

- Compute the Delaunay Triangulation
Description

- Compute the Delaunay Triangulation
- Generate the α-complex
 - The algorithm actually computes the α-complex for all α values.
Description

- Compute the Delaunay Triangulation
- Generate the α-complex
 - The algorithm actually computes the α-complex for all α values.
Description

- Compute the Delaunay Triangulation
- Generate the α-complex
 - The algorithm actually computes the α-complex for all α values.
- Extract the boundary of the α-shape from the α-complex
Description

- Compute the Delaunay Triangulation
- Generate the α-complex
 - The algorithm actually computes the α-complex for all α values.
- Extract the boundary of the α-shape from the α-complex
- Steps 1 and 2 can be precomputed for a given P
Complexity

- Delaunay Triangulation: $O(n \log n)$
- Generate α-complex: $O(m \log m)$
- Extract boundary of α-shape: $O(m)$ (could be better?)
We assumed that P was in \textit{general position} form.
We assumed that \(P \) was in *general position* form.

In reality, point sets often break these constraints.
General Position Assumption

- We assumed that P was in general position form
- In reality, point sets often break these contraints
- Solution: *Simulation of simplicity* H. Edelsbrunner and E. P. Mcke, ACM Trans. Graph. 9(1) 1990
Properties of α-Shapes

- $S_{\infty}(P) = \text{conv}(P)$
- $S_0(P) = P$
Properties of α-Shapes

- $S_\infty(P) = \text{conv}(P)$
- $S_0(P) = P$
- $S_{\alpha_1}(P) \subset S_{\alpha_2}(P)$ if $\alpha_1 < \alpha_2$
Properties of α-Shapes

- $S_\infty(P) = \text{conv}(P)$
- $S_0(P) = P$
- $S_{\alpha_1}(P) \subseteq S_{\alpha_2}(P)$ if $\alpha_1 < \alpha_2$
- $S_\alpha(P) \subseteq DT(P)$
Advantages

- α-shape reconstructions can have arbitrary topology
- The α-shape interpolates the set P
Disadvantages

- The choice of α-value is non-intuitive
- The reconstruction may not be water tight
- The reconstruction may be disjoint
Given a point set P, one can only choose a single α value.
Sampling Density

- Given a point set \(P \), one can only choose a single \(\alpha \) value.
 - The \(\alpha \)-value is determined by the smallest feature in the reconstruction.
Given a point set P, one can only choose a single α value.
- The α-value is determined by the smallest feature in the reconstruction.
- Thus, the α-value determines the sampling density everywhere.
Given a point set P, one can only choose a single α value.
- The α-value is determined by the smallest feature in the reconstruction
- Thus, the α-value determines the sampling density everywhere

P must be uniformly sampled, at a resolution constrained by the locally highest resolution desired.
Given a point set P, one can only choose a single α value.
- The α-value is determined by the smallest feature in the reconstruction
- Thus, the α-value determines the sampling density everywhere

P must be uniformly sampled, at a resolution constrained by the locally highest resolution desired.

- What about blending several α-shapes together?
- What about defining $\alpha(q)$ for $q \in \mathbb{R}^d$ such that $\alpha(q)$ is proportional to sampling density near q