On Visual Similarity Based 3D Model Retrieval

Ding-Yun Chen Xiao-Pei Tian Yu-Te Shen Ming Ouhyoung

Department of Computer Science and Information Engineering
National Taiwan University, Taipei

600.658 - Seminar on Shape Analysis and Retrieval
Visual Similarity Based 3D Model Matching

- Image differences in light fields
- Multiple viewing angles
- **Exhaustive search** to find best alignment
1. Feature Extraction for Representing 3D Models
 - LightField Descriptor
 - Image Metric
 - Extracting LightField Descriptors for a 3D Model

2. Retrieval of 3D Models Using LightField Descriptors

3. Experimental Results
Outline

1. Feature Extraction for Representing 3D Models
 - LightField Descriptor
 - Image Metric
 - Extracting LightField Descriptors for a 3D Model

2. Retrieval of 3D Models Using LightField Descriptors

3. Experimental Results
Light Field

Definition

A light field (or plenoptic function) is a 5D function representing the radiance at a given 3D point along a given direction.

- Reduces to 4D in free space
- Collection of 2D images rendered from a 2D array of cameras
- 20 cameras positioned on the vertices of a regular dodecahedron
A light field (or plenoptic function) is a 5D function representing the radiance at a given 3D point along a given direction.

- Reduces to 4D in free space
- Collection of 2D images rendered from a 2D array of cameras
- 20 cameras positioned on the vertices of a regular dodecahedron
 - Images rendered as silhouettes
 - Collection of 10 silhouettes are sufficient to render a 20-camera light field
Light Field

Definition

A light field (or plenoptic function) is a 5D function representing the radiance at a given 3D point along a given direction.

- Reduces to 4D in free space
- Collection of 2D images rendered from a 2D array of cameras
 - 20 cameras positioned on the vertices of a regular dodecahedron
 - Images rendered as silhouettes
 - Only 10 of the 20 silhouettes need to be used
Light Field

Definition

A light field (or plenoptic function) is a 5D function representing the radiance at a given 3D point along a given direction.

- Reduces to 4D in free space
- Collection of 2D images rendered from a 2D array of cameras
- 20 cameras positioned on the vertices of a regular dodecahedron
 - Images rendered as silhouettes
 - Only 10 of the 20 silhouettes need to be used
Light Field

Definition

A light field (or plenoptic function) is a 5D function representing the radiance at a given 3D point along a given direction.

- Reduces to 4D in free space
- Collection of 2D images rendered from a 2D array of cameras
- 20 cameras positioned on the vertices of a regular dodecahedron
 - Images rendered as silhouettes
 - Only 10 of the 20 silhouettes need to be used
A light field (or plenoptic function) is a 5D function representing the radiance at a given 3D point along a given direction.

- Reduces to 4D in free space
- Collection of 2D images rendered from a 2D array of cameras
- 20 cameras positioned on the vertices of a regular dodecahedron
 - Images rendered as silhouettes
 - Only 10 of the 20 silhouettes need to be used
Outline

1. Feature Extraction for Representing 3D Models
 - LightField Descriptor
 - Image Metric
 - Extracting LightField Descriptors for a 3D Model

2. Retrieval of 3D Models Using LightField Descriptors

3. Experimental Results
A LightField Descriptor for 3D Models

Definition

LightField Descriptor is defined as features of 10 images rendered from vertices of dodecahedron over a hemisphere.

- 60 camera positions for each orientation of the dodecahedron
- Regular Dodecahedron
- \(D_A(L_1, L_2) = \min_{i=1}^{60} \sum_{k=1}^{10} d(l_{1k}, l_{2k}) \)
A LightField Descriptor for 3D Models

Definition

LightFiled Descriptor is defined as features of 10 images rendered from vertices of dodecahedron over a hemisphere.

- 60 camera positions for each orientation of the dodecahedron
- \[D_A(L_1, L_2) = \min_{i=1}^{60} \sum_{k=1}^{10} d(l^i_{1k}, l^i_{2k}) \]
A LightField Descriptor for 3D Models

Definition

LightField Descriptor is defined as features of 10 images rendered from vertices of dodecahedron over a hemisphere.

- 60 camera positions for each orientation of the dodecahedron
- \(D_A(L_1, L_2) = \min_{i=1}^{60} \sum_{k=1}^{10} d(l_{1k}^i, l_{2k}^i) \)
On orientations of pigs and cows
A Set of LightField Descriptors to Counter Rotational Variations

- Use N different camera system orientations
 - Ensure uniform camera distribution
 - Obtains a total of $(N \times (N - 1) + 1) \times 60$ different rotations between 2 models

 \[D_B = \min_{j,k=1}^N D_A(L_{1j}, L_{2k}) \]
 - Current work uses $N = 10$ (5460 different rotations)
A Set of LightField Descriptors to Counter Rotational Variations
Outline

1. Feature Extraction for Representing 3D Models
 - LightField Descriptor
 - Image Metric
 - Extracting LightField Descriptors for a 3D Model

2. Retrieval of 3D Models Using LightField Descriptors

3. Experimental Results
Combine Different Shape Descriptors

- Combine a “region-based” and a “contour-based” shape descriptor
 - Region-based descriptors:
 - Combine information from all pixels within the region
 - Do not emphasize boundary features
 - Zernike Moment Descriptors (ZMD)
 - Contour-based descriptors:
 - Exploits only boundary information, ignoring the interior
 - Fourier Descriptors (FD)
- 35 ZMD and 10 FD coefficients (8 bits)
 - \[d(l_1, l_2) = \sum_{j=1}^{45} |C_{1j} - C_{2j}| \]
Combine Different Shape Descriptors

- Combine a “region-based” and a “contour-based” shape descriptor

 - Region-based descriptors:
 - Combine information from all pixels within the region
 - Do not emphasize boundary features
 - Zernike Moment Descriptors (ZMD)

 - Contour-based descriptors:
 - Exploits only boundary information, ignoring the interior
 - Fourier Descriptors (FD)

- 35 ZMD and 10 FD coefficients (8 bits)
- \[d(l_1, l_2) = \sum_{j=1}^{45} |C_{1j} - C_{2j}| \]
Combine Different Shape Descriptors

- Combine a “region-based” and a “contour-based” shape descriptor

 - Region-based descriptors:
 - Combine information from all pixels within the region
 - Do not emphasize boundary features
 - Zernike Moment Descriptors (ZMD)

 - Contour-based descriptors:
 - Exploits only boundary information, ignoring the interior
 - Fourier Descriptors (FD)

- 35 ZMD and 10 FD coefficients (8 bits)
- \[d(l_1, l_2) = \sum_{j=1}^{45} |C_{1j} - C_{2j}| \]
Combine Different Shape Descriptors

- Combine a "region-based" and a "contour-based" shape descriptor

Region-based descriptors:
- Combine information from all pixels within the region
- Do not emphasize boundary features
- Zernike Moment Descriptors (ZMD)

Contour-based descriptors:
- Exploits only boundary information, ignoring the interior
- Fourier Descriptors (FD)

- 35 ZMD and 10 FD coefficients (8 bits)
- \[d(l_1, l_2) = \sum_{j=1}^{45} |C_{1j} - C_{2j}| \]
Outline

1. Feature Extraction for Representing 3D Models
 - LightField Descriptor
 - Image Metric
 - Extracting LightField Descriptors for a 3D Model

2. Retrieval of 3D Models Using LightField Descriptors

3. Experimental Results
Extracting LightField Descriptors for a 3D Model

Algorithm

1. Normalize for translation and scaling
2. Obtain LightField Descriptors for 10 different camera system orientation
3. For each LightField Descriptor store 10 views of the image
4. For each of the 100 images store the corresponding image metric
Extracting LightField Descriptors for a 3D Model

Algorithm

1. Normalize for translation and scaling
2. Obtain *LightField Descriptors* for 10 different camera system orientation
3. For each *LightField Descriptor* store 10 views of the image
4. For each of the 100 images store the corresponding image metric
Extracting LightField Descriptors for a 3D Model

Algorithm

1. Normalize for translation and scaling
2. Obtain *LightField Descriptors* for 10 different camera system orientation
3. For each *LightField Descriptor* store 10 views of the image
4. For each of the 100 images store the corresponding image metric
Extracting LightField Descriptors for a 3D Model

Algorithm

1. Normalize for translation and scaling
2. Obtain *LightField Descriptors* for 10 different camera system orientation
3. For each *LightField Descriptor* store 10 views of the image
4. For each of the 100 images store the corresponding image metric
Outline

1. Feature Extraction for Representing 3D Models
 - LightField Descriptor
 - Image Metric
 - Extracting LightField Descriptors for a 3D Model

2. Retrieval of 3D Models Using LightField Descriptors

3. Experimental Results
Baseic Idea

- Use a few *LightField Descriptors* and only a few highly quantized coefficients while comparing all images in the database.
- Set the threshold to be the mean of similarity.
- Progressively refine the comparison by:
 - Increasing the number of *LightField Descriptors* to compare.
 - Increasing the number of coefficients used to calculate similarity.
Outline

1 Feature Extraction for Representing 3D Models
 - LightField Descriptor
 - Image Metric
 - Extracting LightField Descriptors for a 3D Model

2 Retrieval of 3D Models Using LightField Descriptors

3 Experimental Results
Test Set

- Database of 1,833 3D models
- Annotated by a single human evaluator
- Models classified according to ”functional similarities”
 - 47 “classes”, covering 549 models
 - Rest 1,284 models classified as ”miscellaneous”
Performance Evaluation

- **3D Harmonics**: discussed yesterday
- **Shape 3D Descriptor**: curvature histograms (MPEG 7 standard)
- **Multiple View Descriptor**: align using PCA
Robustness Evaluation

- **Similarity transformation:** rotation, translation & scaling
- **Noise:** vertex coordinates changed
- **Decimation:** randomly delete 20% polygons
Summary

- Not very concise
- Quick to compute (?)
- Not very efficient to match
- Good discrimination
- Invariant to transformations
- Invariant to deformations
- Insensitive to noise
- Insensitive to topology (?)
- Robust to degeneracies
Regular Dodecahedron

Picture courtesy: http://btm2xl.mat.uni-bayreuth.de
Regular Dodecahedron

Picture courtesy: http://btm2xl.mat.uni-bayreuth.de
Zernike Moment Descriptors

- **Zernike polynomials**
 - A set of complex-valued functions over the unit circle
- **Zernike moments of order n with repetition m**

\[
V_{nm}(x, y) = V_{nm}(\rho \cos \theta, \rho \sin \theta) = R_{nm}(\rho) \exp(jm\theta)
\]

\[
R_{nm}(\rho) = \sum_{s=0}^{(n-|m|)/2} (-1)^s \frac{(n-s)!}{s!(\frac{n+|m|}{2} - s)!}(\frac{n-|m|}{2} - s)!\rho^{n-2s}
\]

\[
A_{nm} = \frac{n+1}{\pi} \sum_{x,y:x^2+y^2 \leq 1} f(x, y) V_{nm}^*(x, y)
\]
Zernike Moment Descriptors

- Zernike polynomials
 - A set of complex-valued functions over the unit circle
- Zernike moments of order n with repetition m

\[V_{nm}(x, y) = V_{nm}(\rho \cos \theta, \rho \sin \theta) = R_{nm}(\rho) \exp(jm\theta) \]

\[R_{nm}(\rho) = \sum_{s=0}^{(n-|m|)/2} \frac{(-1)^s (n-s)!}{s! \left(\frac{n+|m|}{2} - s \right)! \left(\frac{n-|m|}{2} - s \right)!} \rho^{n-2s} \]

\[A_{nm} = \frac{n+1}{\pi} \sum_{x,y:x^2+y^2 \leq 1} f(x, y) V_{nm}^*(x, y) \]
Fourier Descriptors

- Fourier transform of a shape signature
- Centroid distance used as the shape signature
- Use only the magnitude of Fourier coefficients

\[r(t) = \left([x(t) - x_c]^2 + [y(t) - y_c]^2 \right)^{1/2} \]

\[x_c = \frac{1}{N} \sum_{t=0}^{N} x(t), \quad y_c = \frac{1}{N} \sum_{t=0}^{N} y(t) \]

\[a_n = \frac{1}{N} \sum_{t=0}^{N} r(t) \exp\left(-\frac{j2\pi nt}{N} \right) \]

\[f = \left\{ \frac{|a_1|}{|a_0|}, \frac{|a_2|}{|a_0|}, \ldots, \frac{|a_{N/2}|}{|a_0|} \right\} \]
Fourier Descriptors

- Fourier transform of a shape signature
- Centroid distance used as the shape signature
- Use only the magnitude of Fourier coefficients

\[
\begin{align*}
 r(t) &= \left([x(t) - x_c]^2 + [y(t) - y_c]^2 \right)^{1/2} \\
 x_c &= \frac{1}{N} \sum_{t=0}^{N} x(t), \quad y_c = \frac{1}{N} \sum_{t=0}^{N} y(t) \\
 a_n &= \frac{1}{N} \sum_{t=0}^{N} r(t) \exp\left(\frac{-j2\pi nt}{N} \right) \\
 f &= \left\{ \frac{|a_1|}{|a_0|}, \frac{|a_2|}{|a_0|}, \ldots, \frac{|a_{N/2}|}{|a_0|} \right\}
\end{align*}
\]
Fourier Descriptors

- Fourier transform of a shape signature
- Centroid distance used as the shape signature
- Use only the magnitude of Fourier coefficients

\[
\begin{align*}
\mathbf{r}(t) &= ([x(t) - x_c]^2 + [y(t) - y_c]^2)^{1/2} \\
x_c &= \frac{1}{N} \sum_{t=0}^{N} x(t), \quad y_c = \frac{1}{N} \sum_{t=0}^{N} y(t) \\
a_n &= \frac{1}{N} \sum_{t=0}^{N} \mathbf{r}(t) \exp(\frac{-j2\pi nt}{N}) \\
f &= \left\{ \frac{|a_1|}{|a_0|}, \frac{|a_2|}{|a_0|}, \ldots, \frac{|a_{N/2}|}{|a_0|} \right\}
\end{align*}
\]
Model Corruption

- **a**: Original 3D model
- **b**: Effect of noise
- **c**: Effect of decimation