TREC 2005 Genomics Track Experiments at IBM Watson

Rie Kubota Ando

IBM Watson Research

Hawthorne, NY, USA
riel@us.ibm.com

Abstract

This paper describes our experiments
in the TREC 2005 Genomics Track.
For the ad-hoc retrieval task, we
study synonym-based query expan-
sion, as well as the effectiveness of a
new pseudo-relevance feedback method
which is derived from our recent work
on semi-supervised learning. For the
categorization task, we study vari-
ous methods for estimating conditional
class probability and determining the
optimal threshold parameter — essen-
tial for obtaining high performance re-
sults for this task.

1 Introduction

This paper reports on our participation in the
TREC 2005 Genomics Track. The submissions
were on two tasks: ad-hoc retrieval and cat-
egorization. The goal of the ad-hoc retrieval
task was to search a Medline corpus consist-
ing of biomedical paper abstracts. We ex-
perimented with a new pseudo-relevance feed-
back method derived from a recently proposed
semi-supervised learning method, as well as do-
main database synonym lookup for query ex-
pansion. The goal of the categorization task
was to select journal articles to be cataloged in
the Mouse Genome Informatics database (MGI).
On this task, we used a regularized linear classi-
fier and experimented with supervised and semi-
supervised learning approaches, with emphasis

*This work was done when the second author was a
summer visitor at IBM T.J. Watson Research Center.

tThis work was done when the third author was at
IBM T.J. Watson Research Center.

Mark Dredze *
University of Pennsylvania
Philadelphia, PA, USA

mdredze@seas .upenn.edu

Tong Zhang |
Yahoo Inc
New York City, USA
tzhang@yahoo-inc.com

on class probability estimation-based threshold
determination methods.

Our systems are competitive on both tasks.
On the ad-hoc retrieval task, our two official
runs produced the second and third best map
results among all the 45 automatic runs, with
small differences from the top automatic run.
On the categorization task, our official run
achieved the best utility on one of four sub-tasks.

The paper is organized as follows. We present
our ad-hoc retrieval system in Sections 2.1-2.4.
The results on the 2004 and 2005 topic sets are
reported in Section 2.5. The categorization sys-
tems and the performance results are presented
in Section 3.

2 Ad-hoc retrieval

It appears from the literature that successful
systems in the 2004 Genomics Track are typi-
cally equipped with some form of pseudo rele-
vance feedback and query expansion using do-
main databases. We adopt this framework and
focus on:

e Developing a new automated feedback
method, which we will refer to as structural
feedback .

e The use of domain databases for obtaining
synonyms, and their use for query expan-
sion.

The high-level data flow is shown in Figure 1.
We first index documents in the corpus, which
we view as the generation of document vectors.
For a given search topic, our system generates a
query vector incorporating synonyms for query
terms using domain database lookup. For the
generation of both query and document vectors,
we use term weighting similar to the popular

Indexing Document
vectors
Query generation Structural
Topic x > Query > : feedback
vector
Synonym v
Domain lookup Enhanced
knowledge query vector

Figure 1: Ad-hoc retrieval data flow (high-level).

BM25 (Robertson et al., 1994). A search of
the index given the query vector is performed
by taking the inner product of the query vector
and each document vector. From the query vec-
tor and document vectors thus retrieved, struc-
tural feedback generates a new enhanced query
vector. The final search results are obtained by
taking inner products of this new query vector
and document vectors.

We first present the structural feedback
method (Section 2.1), and then describe the use
of domain knowledge for enhancing queries in
Section 2.2. The 2005 topic set differs from the
2004 topic set in its introduction of five topic
templates. We discuss the implications of tem-
plates in Section 2.3. After describing the im-
plementation details such as term weighting in
Section 2.4, we report performance results on
the 2004 and 2005 topic sets (Section 2.5).

2.1 Using unlabeled data through
structural feedback

This section describes our new automatic feed-
back algorithm. The idea is to learn a relevant
structure shared by multiple variations of the
original query, and then use this shared struc-
ture to improve IR performance. The devel-
opment of our new automatic feedback method
stems from the Alternating Structure Optimiza-
tion (ASO) algorithm recently proposed for
semi-supervised learning.

2.1.1 ASO and its application to

semi-supervised learning

ASO is a machine learning algorithm designed
to improve prediction performance (e.g. classifi-
cation performance) by simultaneously learning
multiple prediction problems that are related to
each other (Ando and Zhang, 2005a; Ando and
Zhang, 2005b). The shared structure is learned
by joint empirical risk minimization over these
multiple related tasks. The learned structure is
then transferred to the target prediction prob-
lem of interest.

The intuition is that by observing many re-
lated problems, one can learn useful informa-
tion (predictive structure) shared by these prob-
lems and then use it for improving overall per-
formance. In particular, the application of ASO
in the semi-supervised setting exploits unlabeled
data by creating multiple prediction problems
and their labeled examples automatically from
unlabeled data. If these created prediction prob-
lems (called auziliary problems) are related to
the target prediction problem of interest, then
the shared predictive structure learned by ASO
will be useful for the target problem.

We do not include the algorithmic details of
ASO in this paper; instead, we refer the reader
to (Ando and Zhang, 2005a; Ando and Zhang,
2005b). Here we simply state that ASO pro-
duces a structure matrix ©, which captures in-
formation learned from unlabeled data via auxil-
iary problems. The rows of © are essentially the
most significant left singular vectors of a matrix
of feature-weight vectors learned on auxiliary
problems. (An alternating optimization proce-
dure can be used to improve the learned struc-
ture ©, which gives the name of the method).
From © and a feature vector x, we obtain a new
feature vector representation:

@:[&]. (1)

The final step of ASO is to perform training for
the target problem using the new feature vector
representation in (1) and the labeled data. It
has been shown that the inclusion of unlabeled
data in this way (i.e., via © in (1)) improves pre-
diction performance on a number of tasks such

as text categorization, named entity and syntac-
tic phrase recognition.

2.1.2 Structural feedback overview

Suppose that vector representations (or a fea-
ture mapping) of a query and a collection of
documents are given as input. Essentially, our
structural feedback algorithm employs a struc-
tural learning idea similar to that of ASO.
Specifically, we consider search as a problem of
predicting a document’s relevancy/irrelevancy
to the topic (represented by the query), using
a linear prediction model. We further consider
the given query vector as the only positive (‘rel-
evant’) example available for training on this
task, while regarding all the documents (that
are to be retrieved) as unlabeled data.

From this viewpoint, negative (‘irrelevant’)
examples are not explicitly given. Therefore in-
stead of using a discriminative learning method
that tries to separate positive data from negative
data, it is more appropriate to consider gener-
ative learning methods where a model for each
class can be constructed from positive data only.
Such generative models include Naive Bayes and
Centroid methods (which uses the mean of the
positive data points as the weight vector). Be-
cause a weighting scheme similar to BM25 has
been applied priori, we shall simply adopt the
centroid method in our approach. With only the
query as positive data, the weight vector after
training (using a centroid method) trivially re-
sults in the query vector itself. Since we assume
a linear model, the prediction or output value
(relevancy score) is given by the inner product
of the weight vector (query vector) and a fea-
ture vector (document vector). This is consis-
tent with traditional IR methods.

We know from the machine learning literature
that one can improve prediction performance
by using unlabeled examples in addition to la-
beled examples — this is essentially the semi-
supervised learning problem. A natural question
to ask is whether related ideas can be applied to
information retrieval, when posed as a learning
problem such as outlined above. In this case, un-
labeled examples are simply documents to be re-
trieved since their labels (relevancy/irrelevancy

to the search topic) are not given.

Recall that the essence of ASO is to learn a
useful predictive structure from multiple related
problems. To apply this idea to the task of
relevancy prediction in IR, we create auxiliary
problems by generating a number of variants of
the given query. More precisely, we consider the
documents ‘highly ranked’ by these query vari-
ants as the positive examples of the auxiliary
prediction problems, and apply structural learn-
ing to these auxiliary problems. Our method
then generates the structure matrix ©, which
captures predictive structure shared by the aux-
iliary problems. If we apply the original ASO
formulation, new feature vectors (a new query
vector and new document vectors) would be gen-
erated as in (1). However, for efficiency, we keep
document vectors as they are and only change
the query vector by:

G=q+0670q. (2)

It is easy to verify that doing so is equivalent
to (1) for our purpose. Thus, we obtain a new
enhanced query vector ¢.

Input: initial query vector ¢

Parameters: m, h

Output: new query vector ¢

Generate query variants qi, ¢, - ,qp from q.

S := { m documents highly ranked by query ¢ }

fori=1top
S; := 8 N { documents highly ranked by ¢; }
w; = Zdesi /|| Zdesi d|l2

End for

Let W be a matrix whose i-th column is w;.

Set the rows of © to be W’s h most significant
left singular vectors.

§:=q+0"0q

Figure 2: Overview of the structural feedback
method

2.1.3 Structural feedback

implementation details

Although there are several ways to generate
useful query variants, our implementation gen-
erates variants by removing up to k tokens (for
k =0,1,2) from the input query. For instance,
if the given query consists of { ferroportin, 1,

iron, human }, we will have eleven query vari-
ants: four three-token variants ({ ferroportin, 1,
iron }, { ferroportin, 1, human }, { ferroportin,
iron, human }, { 1, iron, human }); six two-
token variants ({ ferroportin, 1 }, { ferroportin,
iron }, ---); and the original query.

To retrieve documents by these query vari-
ants, it is too expensive to search the entire cor-
pus. Instead, we first retrieve m documents by
the given query, and from these m documents we
choose the ones highly ranked by the query vari-
ants. This requires the use of a cut-off criterion
for choosing highly-ranked documents. Consider
a pseudo document in which every token in the
query variant g; occurs only once, and let d; be
the document vector (generated as in Section
2.4.2) for this pseudo document. We say that
document (vector) d is highly ranked by g¢; if and
only if ¢l'd > CIZT(Z,

In the original ASO algorithm, empirical risk
minimization is used for training discriminative
classifiers on the auxiliary problems. As men-
tioned earlier, due to the absence of negative ex-
amples, we employ a generative learning model
in this work. Specifically we adopt the (normal-
ized) centroid method where the feature-weight
vector w; is given by the length-normalized av-
erage of the positive examples (highly ranked
document vectors that are selected). Then, as
in ASO, we construct a matrix W so that its
i-th column is the weight vector w; and com-
pute W’s h most significant left singular vectors,
which give the rows of the structure matrix ©.
In our experiments we set the dimension param-
eter h = 1.

Our implementation of the structural feed-
back method has two additional parameters.
One is m, the number of documents retrieved
by the initial query. In our official runs, we set
m = 30. The performance is relatively insensi-
tive to m as long as m is not too small. The sec-
ond parameter is the number of terms we keep
in the new query vector ¢. Although it might
be ideal, using ¢ as is considerably increases the
search runtime. We zero out all but the k largest
entries of §. The performance seems to be rela-
tively insensitive to k in the range of £ > 50. In
our official runs, we set & = 100.

Figure 2 summarizes the structural feedback
method.

2.1.4 Discussion

Apart from the theoretical justification given
in the original ASO work (Ando and Zhang,
2005a), the intuitive meaning of structural feed-
back becomes clearer when we set h = 1. The
structure matrix © for h = 1 has only one row,
for which we write 6; so that §; = ©”. By con-
struction, 6; is the most significant left singu-
lar vector of the auxiliary feature-weight matrix.
Therefore, for p query variants, we have:

p

0 = arg‘rgllax (0T w;)? , (3)
=l

i = q+ (6190 . (4)

That is, the new query vector ¢ is a weighted
sum of the original query ¢ and an additional
query vector #y. In the additional query vec-
tor @1, query terms are automatically weighted
based on how representative they are in the doc-
uments highly ranked by query variants, as seen
from (3). The coefficient 67 q serves as a global
weight of the additional query 6. This global
weight becomes relatively large, if the original
query terms are relatively representative in the
documents retrieved by many of the query vari-
ants. As such, 67 ¢ serves as an automatic weight
that reflects confidence in the usefulness of the
additional query ;. That is, if queries slightly
different from one another retrieve essentially
similar documents in which the original query
terms relatively dominate, one could more con-
fidently say that the terms from those retrieved
documents should be useful as query terms.

2.2 Using domain knowledge

2.2.1 Database lookup for synonyms

It is well known that the key concepts in this
domain (such as genes and proteins) have many
aliases. We use the following databases to look
for synonyms:

e LocusLink!

e Gene Ontology (GO)?

"http://www.indiana.edu/ "rac/clsd/locuslink.html
*http://www.geneontology.org

e Mesh3
e Swiss-Prot?

We search the databases for longest match
with the given topic text and add the synonyms
listed in the matched database entries to the
query.

In addition, we use an abbreviation lexicon to
map abbreviations to their full forms (e.g., map-
ping “TGFB” to “Transforming Growth Factor
Beta”). We automatically generated this lexicon
from the Medline corpus by a method essentially
similar to (Schwartz and Hearst, 2003). To im-
prove the mapping precision we remove entries
that occurred less than five times and select the
most frequent full form if multiple forms exist.

Given the initial query vector ¢, our new
query vector ¢s enhanced by the database
lookup is: g5 = g + 0.1s, where s is the query
vector generated (as in Section 2.4.2) from the
additional tokens from the synonyms and the
full forms of abbreviations.

To apply structural feedback to the query en-
hanced with synonyms, we use ¢, to initially re-
trieve the m documents, but we use the original
query g to generate query variants. The final
query is then generated by gs + (67 ¢5)0:.

2.2.2 Bi-grams

Biochemical entity names often contain both
alphabetical characters and digits and have no-
tational variations (e.g., “ABC1” vs. “ABC-
17). To counteract this, we add selected to-
ken bi-grams to the index and queries. More
specifically, we generate token bi-grams (e.g.,
“ABC_1” where “_” indicates the token bound-
ary) whenever we see an alphabetic chunk fol-
lowed by a digit chunk with/without a white
space or a hyphen between them (e.g., “ABC1”,
“ABC 17, “ABC-17). Similarly, we generate to-
ken bi-grams (e.g., “1_ABC”) for digit chunks
followed by alphabetic chunks (e.g., “1ABC”, “1
ABC”, “1-ABC”). This is done both in index-
ing and in query generation. The token bi-grams
added to the queries and documents are treated

Shttp://www.nlm.nih.gov/mesh /meshhome.html
*http://www.ebi.ac.uk/swissprot/

in the same way as the other tokens in the gen-
eration of query/document vectors.

2.3 Topic templates

Since the Genomics Track is relatively new, the
only available topic set with relevance judg-
ments useful for the development of our methods
is the one from 2004. Although the 2004 topics
are in the usual TREC format, the 2005 topics
are expressed in five topic templates. Most of
these templates have two slots such as “roles of
gene X in disease Y”. The implication is that the
2005 topics look for more specific information
than the 2004 topics (e.g., “information on gene
X”); consequently, the 2005 topics are appar-
ently more difficult than the 2004 topics. (When
using two-slot topic templates, finding X only is
not enough. Relevant documents are required
to contain both an X and a Y that are related
to each other in the designated way.) In addi-
tion, the 2005 topics are substantially less ver-
bose than the 2004 topics, which have the title
and need sections. Such terse topics (conveying
less information) pose a challenge.

If a sufficient amount of development data
were provided, we could have worked on devel-
oping methods that address such issues. How-
ever, only two sample topics per template were
made available, and their relevance judgments
were indicated as incomplete/unreliable. Given
the absence of appropriate development data,
we decided not to do anything special with the
newly introduced topic format.

2.4 Implementation details

2.4.1 Indexing

We tokenize the text at white spaces after
replacing all the non-alphabetic and non-digit
characters with white spaces. The Porter stem-
mer is used for stemming, and stopwords (func-
tion words) are removed. In this manner, we
obtain tokens (or terms) from the T1I (title), AB
(abstract), and RN sections of the Medline ar-
ticles, and index documents with these terms.
Our experiments use an in-house search engine
based on the conventional inverted file mecha-
nism.

descriptions map
baseline (simple queries) 37.95 -
bi-gram 39.56 (+1.61)
synonyms 39.98 (+2.03)
(2004 best (Fujita, 2004)) 40.75 (+2.80)
bi-gram + synonyms 41.45 (+3.50)
structural feedback 44.20 (+6.25)
structural feedback + bi-grams 45.19 (+7.24)
structural feedback + bi-grams + synonyms | 45.52 (47.57)

Figure 3: Mean average precision results (%) on 2004 topics. The numbers in parentheses are the

gains compared to our baseline performance.

2.4.2 Query and document vector
representations

A query is generated from the narrative-
format topic text, removing stopwords and the
template words (e.g., “role”). We generate a
query vector ¢ and document vector d by set-
ting the j-th entries (corresponding to the j-th
term) ¢[j] and d[j] to:

. : fi- (k3 +1)
= Jidf; - LT
q[j] 1 i f]_,_k?’
f’..kl
dlj] = /idf; - J ,
2 T fi+ k(=) +b-1/1)
n+1
idf;, = 1 _—
1 ©8 (dfj+0.5> ’

where f; and fj’~ are the frequencies of the j-th
term in the topic and document, respectively,
[is the length of document, [is the average
length of the documents, df; is the document
frequency of the j-th term, and n is the num-
ber of documents. The above feature weight-
ing is essentially the same as BM25 (Robert-
son et al., 1994). Although IR term weight-
ing might be typically described as a product
of ¢[j] and d[j], we instead consider a query vec-
tor and a document vector separately as feature
vectors. Throughout the experiments, we set
ki = 1.2,k3 = 7,b = 0.75, adopted from the
Lemur® default setting.

http://www.lemurproject.org

2.5 Ad-hoc retrieval results

2.5.1 Results on the 2004 topics

Figure 3 shows the mean average precision
(map) results on the 2004 topics. Our baseline
uses queries generated without structural feed-
back or synonyms/bi-grams. The TITLE and
NEED sections were used to generate the initial
query vectors.

Most notably, structural feedback greatly im-
proves performance over the baseline, produc-
ing 44.20% map. Combining structural feed-
back with bi-grams and synonyms, the map is
45.52%, which is 7.57% higher than our base-
line and 4.77% higher than the 2004 top system
(Fujita, 2004).

Bi-grams and synonyms are both effective on
the 2004 topics. However, upon the inspec-
tion of the performance on individual topics, we
found that bi-gram queries are somewhat un-
stable — i.e., bi-grams greatly improve perfor-
mance on some topics but significantly degrade
performance on other topics. Therefore, we de-
cided to submit one run with “structural feed-
back-+synonyms” and the other run with “struc-
tural feedback+bi-grams+synonyms”.

2.5.2 Results on the 2005 topics

Figure 4 shows the mean average precision re-
sults on the 2005 topics. Overall, the perfor-
mance is lower than on the 2004 topics. This
is not surprising. As mentioned in Section 2.3,
the 2005 topics are apparently more challenging,
presumably as a result of introducing templates.

It turned out that unlike the 2004 topics, syn-

run names | descriptions map

- synonyms 25.89 (—0.21)

- baseline 26.10 -

- bi-grams 26.54 (+0.44)
ibmadz05bs | structural feedback +synonyms+bi-grams | 28.59 (4+2.49)
ibmadz05us | structural feedback +synonyms 28.83 (4+2.73)
(yorkO5gm1l) | (best automatic run) 28.88 -

- structural feedback +bi-grams 29.04 (+2.94)

- structural feedback 29.74 (+3.64)

- structural feedback w/ m=20 30.10 (+4.00)

- structural feedback w/ m=10 30.16 (+4.06)
(yorkO5gal) | (best manual run) 30.20 -

Figure 4: Mean average precision results on 2005 topics. The parameter m for structural feedback
was set to 30 unless specified otherwise. The numbers in parentheses are the gains compared to

our baseline performance.

onyms which we obtained from several domain
specific databases slightly degraded performance
on the 2005 topics. Bi-grams improve perfor-
mance by 0.44% when we do not use the struc-
tural feedback method. However, our finding
is that, in fact, the structural feedback method
alone achieves higher performance than combi-
nations of structural feedback with synonyms
and/or bi-grams (which are our official runs).

The map result of our best official run (ib-
madz05us) is the second best among all the au-
tomatic runs, with a small difference (0.05%)
from the best run. Using structural feedback
alone, we are able to produce a map 30.16%,
which is higher than the best automatic run and
very close to the best manual run.

It is encouraging to confirm that the new
structural feedback method consistently per-
forms well. Moreover, in our private experi-
ments not included in this report, we observed
that this new idea outperformed some conven-
tional pseudo-relevance feedback methods which
we also implemented. We believe that this new
approach warrants further investigation.

2.5.3 Discussion

On the ad-hoc retrieval task, we experimented
with a new automatic feedback method which
we call structural feedback, as well as query ex-
pansion using synonyms found in domain spe-

cific databases. The former turned out to be
consistently useful, while the usefulness of the
latter is inconclusive.

The potential danger in adding synonyms
from databases appears to be at least two-fold.
First, we may introduce irrelevant query terms
because of ‘noisy’ database entries or the inher-
ent ambiguity of the matched entries. Secondly,
and more importantly, even if we can correctly
obtain synonyms, it is not clear, at least to us,
what term weights should be assigned to the to-
kens resulting from those synonyms (which are
often multi-word expressions). If the weights as-
signed to synonym tokens are too large, they
may, in effect, ‘dominate’ other terms that hap-
pen to have no synonyms. Such imbalance of
term weights is a critical issue, especially when
relevant documents must contain two concepts
with a specific relationship.

On the other hand, structural feedback, in ef-
fect, automatically adjusts for each topic, the
weight of the additional query vector 61, based
on an implicitly estimated ‘confidence’. Our ex-
perience indicates that the resulting method is
quite effective. It might be useful to investi-
gate a similar ‘fail-safe mechanism’ for synonyms
from external resources.

Our submission system is purely based on gen-
eral purpose search technology, without any spe-
cific components for topic templates and the se-

mantical meanings they imply. Although we
believe a more dedicated retrieval system spe-
cialized to such applications could yield better
performance on this particular TREC task, i
is encouraging to see that our system, which is
not designed specifically for this track, produces
good results with the help of our new structural
feedback method.

3 Categorization

The purpose of the Genomics Track categoriza-
tion task is to triage MGI journal articles ac-
cording to one of four information needs. There
are four sub-tasks corresponding to the informa-
tion sought: A (Alleles of mutant phenotypes),
G (Gene Ontology annotation), T (Tumor biol-
ogy), and E (Embryologic gene expression). We
submitted three runs for each.

3.1 Measurement

The task setting differs from typical text cate-
gorization tasks in that the evaluation metric,
so-called wtility, is specifically designed for this
track, which penalizes false negatives far more
severely than false positives.

The version used in the evaluation is a nor-
malized utility defined as Uporm = Uraw/Umaz-
For a test collection of documents to catego-
rize, U,qw is calculated as follows: Uyqy =
(up * TP) + (upr * FP), where u, is the rela-
tive utility of relevant documents, and w,, is the
relative utility of non-relevant documents. TP
is the true positive and F'P is the false positive.
Uz 18 the maximum possible utility under per-
fect classification. With u,, = —1, the values of
u, used in the evaluation are 17 for A, 64 for E,
11 for G, and 231 for T.

To maximize utility, special attention is
needed to determine the cut-off threshold. Sup-
pose that the classification method can esti-
mate the conditional in-class probability P(Y =
1/1X), and that we retrieve all documents X
with P(Y = 1|X) > 0 for some cutoff thresh-
old 6. Since the probability of X being TP is
P(Y =1]X), and being FP is 1 — P(Y = 1|X),
any document above the optimal threshold 6
should contribute to U4, positively on average.

This implies that we should choose the thresh-
old such that u,0 + up,(1 —) = 0. That is, we
should retrieve every document X such that

PY =11X) >0 =—up/(uy —tupr). (5)
This method of threshold selection is also used
in (Dayanik et al., 2004).

3.2 Learning methods

We employ regularized linear classification with
modified Huber loss and square (and optionally
1-norm) regularization, separately for each task.
Let the training data be (X;,Y;) (1 = 1,...,n),
where X is the vector representation of a doc-
ument, and Y; € {£1} be the corresponding la-
bel. We seek a linear weight vector w which
minimizes the following objective function:

w:argmm[ZL (w? X;,Y;) + Aw’w,

where A > 0 is an appropriately chosen regular-
ization parameter, which is used to stabilize the
solution, and

max (0,1 — py)?
L) ={ =)

if py > —1
otherwise

It can be shown (Zhang, 2004) that by using this
method, we have a probability model

i X)/2)).

(6)
This probability estimate can then be combined
with (5) to obtain a retrieval strategy, in which
we retrieve every document X such that v X >
—2Upy [(Uy — Upy) — 1.

Another more classical linear model for prob-
ability estimation is logistic regression. Since
threshold determination is particularly impor-
tant to the categorization task (the performance
is very sensitive to slight mistakes in the thresh-
old value), we experimented with a few methods
for threshold determination, including probabil-
ity estimation and direct cross-validation. In ad-
dition, we experimented with feature weighting
schemes such as binary versus TFIDF, as well
as the ASO semi-supervised learning method

P(Y = 1|X) = max(0, min(1, (1

aibmadz05s ASO w/ partially-supervised auxiliary problems; cross-validation threshold.
aibmadz05m1,2 | aibmadz05s + supervised w/ binary features.

eibmadz05s supervised w/ binary features; probability threshold.

eibmadz05m1,2 | eibmadz05s + supervised w/o bi-gram features.

gibmadz05s ASO w/ unsupervised auxiliary problems; probability threshold.
gibmadz05m1,2 | gibmadz05s + supervised

tibmadz05s ASO w/ partially-supervised auxiliary problems; probability threshold.
tibmadz05m1,2 | tibmadz05s + supervised configuration w/ binary features.

Figure 5: Descriptions of categorization runs. m1 and m2 determine thresholds by probability estimation and cross
validation, respectively. Auxiliary problems for ASO are described in (Ando and Zhang, 2005a).

briefly described in Section 2.1. In this study,
we did not attempt to explore complicated docu-
ment representation features, except for the use
of Mesh. Our interests focus on the applica-
tion of semi-supervised learning in this scenario,
as well as threshold determination. The fea-
tures we used are: tokens extracted from the
title, abstract, and body sections of the jour-
nal articles; and the keywords from the Mesh
sections of the corresponding Medline entries.
In addition, we use the bi-grams that combine
each of these tokens and the presence/absence
of "Mouse” in the Mesh sections. No external
knowledge source other than Medline is used.
Although ASO has been shown to effectively
exploit unlabeled data on text categorization,
unfortunately, this particular task is not ideal
for experimenting with semi-supervised learn-
ing. One issue we encountered here is the avail-
ability of unlabeled data, which should ideally
be taken from the same source as the test data.
However, the sources of test data are biomed-
ical journals, to which we did not have access
for copyright reasons. As a substitute, we only
used as unlabeled data a set of Medline abstracts
(which are substantially shorter than full jour-
nal articles) that contain “mouse”, “mice”, or
“mus”. Another issue is the absence of relevant
features. The supervised performance seems to
indicate that our feature space does not contain
strongly discriminating features.® In this situa-
tion, the performance bottleneck is the absence
of relevant features from the designed feature
space rather than the paucity of labeled train-

6 As mentioned in the report on the 2004 participation
(Dayanik et al., 2004), we conjecture that there are some
factors other than the content of the articles that are
affecting the label assignments.

ing examples, and therefore, it becomes harder
to benefit from unlabeled data. The third is-
sue is the peculiarities of the evaluation met-
ric used in this task: the performance is domi-
nated by the proper determination of threshold
values. In fact, even with the first two issues
mentioned above, ASO was able to produce ap-
preciable improvements over the baseline with
oracle thresholds that are optimally selected on
the test data. However, the performance gain
becomes insignificant when thresholds are esti-
mated on the training data, which implies that
a good threshold estimation method is the key
to the success on this task.

Due to the importance of threshold estima-
tion, in addition to the simple method based
on (5) and (6), we also considered a few more
complicated ideas that can potentially improve
the simple probability estimates. The three runs
submitted for each sub-task were generated as
follows. We performed cross validation of var-
ious configurations on the training data. We
selected and combined the two best-performing
configurations by fitting their outputs on the
held-out data (part of the training data) us-
ing logistic regression. We applied two types
of threshold determination methods (described
below) to the combined classifier, which made
two runs. The third run simply used the best-
performing configuration.

One threshold determination method em-
ployed is 5-fold cross validation. The other is
based on probability estimation based on (6)
for modified Huber loss, and we use the stan-
dard probability estimate 1/(1 + exp(—wT X))
if w is trained using logistic regression. With
Unr = —1, we can then threshold the estimated

r=a | r=e | z=g | =t

ribmadz05ml1 | .8492 | .8277 | .4993 | .8931
ribmadz05m2 | .8482 | .8339 | .5004 | .8998
ribmadz05s | .8710 | .8464 | .4717 | .8944
median 7785 | .6548 | 4575 | .7610
best 8710 | .8711 | .5870 | .9433

Figure 6: Categorization utility results.

probability according to (5) at 1/(u, + 1).

3.3 Results

Figure 6 shows the utility results of our official
runs (described in Figure 5) in comparison with
the best and median utility among all the par-
ticipants. It shows that our submission systems
are competitive. All of our 12 official results are
higher than the median. In particular, our aib-
madz05s (ASO) achieved the best result among
all the participants on sub-task A.

One issue with this task is that the results are
quite sensitive to the threshold. Therefore we
focused our efforts on reliable estimation of op-
timal thresholds. We did not spend much time
on engineering features that explore domain spe-
cific knowledge, which might also significantly
improve the overall system performance. As
we mentioned earlier, semi-supervised learning
is not necessarily suitable for this task, due to
the particulars of the task setting.

4 Conclusion

Though our participation was in the Genomics
Track, we focused on generally applicable ap-
proaches. We considered the ad-hoc retrieval
task from the viewpoint of machine learning,
and on the categorization task, we experimented
with a regularized linear classifier in supervised
and semi-supervised settings.

A central theme of our study is to explore the
use of unlabeled data, both in information re-
trieval and in text categorization. We showed
that the newly proposed structural feedback
method, based on ideas from semi-supervised
learning, consistently improves retrieval perfor-
mance.

For the purpose of achieving good perfor-

mance specifically on the Genomics track, a
weakness of our approach is that we did not
explore domain knowledge effectively. For the
ad-hoc retrieval task, we did not include any
system components to handle topic templates,
which were designed for this year’s Genomics
track. In the categorization task, no domain
specific information other than Medline Mesh
terms was used. Although adding some domain
specific components may potentially lead to bet-
ter results on the two tasks in this year’s Ge-
nomics track, it is encouraging to see that good
performance can already be obtained from the
general purpose techniques we investigated here.

Acknowledgments

We would like to thank James Cooper and Hi-
ronori Takeuchi for providing us with the syn-
onym data extracted from gomain databases.
We would also like to thank Anni Coden and
David Johnson for helpful discussions.

References

Rie Kubota Ando and Tong Zhang. 2005a. A framework
for learning predictive structures from multiple tasks
and unlabeled data. Journal of Machine Learning Re-
search, 6(Nov):1817-1853.

Rie Kubota Ando and Tong Zhang. 2005b. High-
performance semi-supervised learning method for text
chunking. In Proceedings of ACL-2005.

A. Dayanik, D. Fradkin, A. Genkin, P. Kantor, and
D. Mardigan. 2004. DIMACS at the TREC 2004 Ge-
nomics Track. In Proceedings of the Thirteenth Text
Retrieval Conference TREC 2004.

S. Fujita. 2004. Revisiting again document length hy-
potheses TREC 2004 Genomics Track experiments at
Patolis. In Proceedings of the Thirteenth Text Re-
trieval Conference TREC 2004.

S.E. Robertson, S. Walter, S. Jones, M.M. Hancock-
Beaulieu, and M. Gatford. 1994. Okapi at TREC-3.
In Proceedings of the Third Text Retrieval Conference
(TREC-3).

A. Schwartz and M. Hearst. 2003. A simple algorithm
for identifying abbreviation definitions in biomedical
text. In Proceedings of the Pacific Symposium on Bio-
computing (PSB 2003).

Tong Zhang. 2004. Statistical behavior and consistency
of classification methods based on convex risk mini-
mization. The Annals of Statistics, 32:56-85. with
discussion.

