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Introduction

Public health policies combatting the spread of infectious
disease rely on bio-surveillance systems for coordinating re-
sponses such as vaccination programs. Classical epidemiol-
ogy assumes that population behavior remains constant dur-
ing an epidemic. However, the public response to an epi-
demic can have a serious impact on an epidemic’s course.

As aresult, modeling the influence of population behavior
has become a recent trend in epidemiology research (Funk,
Salathé, and Jansen 2010; Bisset et al. 2009), and there have
been a few proposed mathematical models to explain indi-
vidual responses to an outbreak, including game theoretic
models (Reluga 2010) and agent based models (Epstein et
al. 2008). Model validation has relied on simulated epidemic
data because of a lack of empirical data. Consider influenza
(seasonal flu) which, as the season progresses, leads to an in-
creased awareness of infection, which may cause individuals
to respond by obtaining a flu vaccination or limiting social
contact. Fear of an illness can itself be a contagion (Epstein
2009), and disease propagation models could be applied.
However, research will be limited without high quality em-
pirical data reflecting population behavioral responses.

One promising source of such data are social media,
such as Twitter. Recent studies have shown an ability to
track influenza rates from Twitter (Paul and Dredze 2011;
Aramaki, Maskawa, and Morita 2011; Signorini, Segre,
and Polgreen 2011; Lampos, De Bie, and Cristianini 2010;
Culotta 2010) since Twitter users tweet illnesses (“i am
home sick with the flu”). However, users may also tweet
concerned awareness of illness (“don’t want to get sick, need
a flu shot”). Identifying these messages can support pro-
posed computational epidemic response models.

We present preliminary results for mining concerned
awareness of influenza tweets. We describe our data set
construction and experiments with binary classification of
data into influenza versus general messages and classifica-
tion into concerned awareness and existing infection.

Data Collection

We began by searching a collection of over 2 billion tweets
(collected between May 2009 and October 2010) (O’Connor
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et al. 2010) for terms related to concerned awareness of in-
fluenza, including “flu”, “worried”, “worry”, “scared”, and
“scare”. The data from this period coincided with the 2009
outbreak of the HIN1 (swine flu) virus. To find data perti-
nent to our study, we manually annotated a subset of these
tweets using Amazon Mechanical Turk (Callison-Burch and
Dredze 2010), a crowdsourcing tool. Annotators were asked

to describe tweets using four categories of interest:

e Concerned Awareness: People expressing concerned
awareness are fearful that s/he or a friend/colleague/family
member will contact the flu, but not that they already have
the flu. These messages may reflect a heightened inter-
est in taking preventative measures for the flu, jokes about
someone being worried about the flu, etc.

e Existing Infection: Concern about existing infection:
People expressing concern that a person may already have
the flu. These messages may list symptoms or reasons to
believe that the author, friend, colleague, etc. has the flu.

e Recognition of Flu Coverage in the Media: Users shar-
ing news stories, linking to news articles about the flu, or
saying that flu has been in the news.

Additionally, we included a fourth Other category for
tweets that did not fit into any of the other categories. Tweets
can be labeled with multiple categories.! Using these guide-
lines, we manually annotated 100 tweets to use as gold stan-
dard labels. Each MTurk task was comprised of ten tweets,
including one gold standard tweet, against which we evalu-
ated annotator performance. Each set of tweets was labeled
by three different annotators to increase the robustness of the
data. In total, 5,990 tweets were annotated.

Experiments

We experimented with using our annotated corpus as train-
ing data for supervised classifiers. The long term goal is to
automatically identify relevant tweets for analysis.

Rejection Rates We checked if gold standard tweets were
annotated correctly (i.e. the tweet was labeled with at least
one of the categories from the gold annotations) to identify
low quality annotators. Annotations by annotators whose

"For example, a tweet can be both concern awareness and ex-
isting infection: “my son has the flu and I’'m worried I'll get it.”
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Figure 1: Precision-recall curves for two tasks (left) and the distribution of labels (right) at different rejection thresholds 7.

accuracy was below some threshold 7 were rejected — differ-
ent training sets were generated by using various acceptance
thresholds 7 (0%, 40%, 60%, and 80%.) The distribution
of labels in the different data sets is shown in Figure 1. At
these 7 thresholds, the rejection rates (the percentage of an-
notations which were removed) are, respectively: 0%, 11%,
23%, and 60%. Although some annotations are removed,
as long as a tweet still had at least two annotations, we in-
cluded the tweet in the training data, so removing a few bad
annotators did not significantly reduce the size of the data
set. Each tweet’s label was determined as the most frequent
label among its available annotations.

Classification We considered two different binary classi-
fication tasks. First, we wanted to classify tweets as either
FLU (either concerned awareness or existing infection) vs
NOT FLU (shared media or other). Second, among the FLU
tweets we classified them as either concerned AWARENESS
or existing INFECTION.

Classification was performed with logistic regression
(MaxEnt) using the MALLET library (McCallum 2002)
with 1- and 2-gram word features. We replaced URLs with
a URL feature. An instance was labeled as “positive” if its
probability was above a certain threshold — by varying this
threshold from 0.0 to 1.0, precision-recall curves were pro-
duced for both tasks (Fig. 1), measured over 10-fold cross
validation. (In both tasks, the first label is considered the
positive label when computing precision and recall.)

With an annotator accuracy threshold of 80% (the highest
quality data), we achieve a maximum F-score of 0.81 for
the FLU vs. NOT FLU task and 0.69 for the AWARENESS vs.
INFECTION task. The labels FLU and NOT FLU essentially
denote whether tweets are relevant or irrelevant to our study
— we are not interested in tweets that do not express direct
concern of influenza. We find that this task is fairly easy
with little difference in the classifier performance among the
different thresholds.

The difference between AWARENESS and INFECTION is
a subtler distinction, and we find this to be a much harder
task. Not only is the F-score lower for this task, but unlike
the first task, we find that there is a substantial drop in per-
formance if we include training data by annotators with less
than 80% accuracy. This indicates that many annotators had
difficulty recognizing this distinction. In future work, we
hope to improve this with richer features beyond n-grams.

Conclusion

We have investigated a more nuanced view of influenza
tweets than previous surveillance work. Our preliminary re-
sults suggest that it is possible to learn to distinguish differ-
ent categories of influenza awareness. Moreover, that actual
mentions of infection are less common than mere awareness,
suggesting that influenza detection through the Web would
benefit from distinguishing these message types.
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