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Abstract

Named Entity Recognition (NER), an information extraction
task, is typically applied to spoken documents by cascading a
large vocabulary continuous speech recognizer (LVCSR) and
a named entity tagger. Recognizing named entities in auto-
matically decoded speech is difficult since LVCSR errors can
confuse the tagger. This is especially true of out-of-vocabulary
(OOV) words, which are often named entities and always pro-
duce transcription errors. In this work, we improve speech NER
by including features indicative of OOVs based on a OOV de-
tector, allowing for the identification of regions of speech con-
taining named entities, even if they are incorrectly transcribed.
We construct a new speech NER data set and demonstrate sig-
nificant improvements for this task.

Index Terms: Named Entity Recognition, OOV Detection

1. Introduction

Named entity recognition (NER) in text, a key step in infor-
mation extraction, is typically treated as a sequence labeling
task in which entities are labeled as people, locations and or-
ganizations [1]. Evaluations have focused on newswire text
and manually transcribed broadcast news. However, NER in
automatic speech recognition (ASR) produced transcripts is a
challenge due to recognition errors and the lack of common
named entity markers (punctuation, capitalization, numerals,
etc.) Understandably, performance lags behind that of text ap-
plications. Attempts to improve speech NER have included
transcript normalization [2], incorporating speech recognition
confidence features [3, 4], or tagging LVCSR word lattices [5].
A difficult unaddressed problem comes from out-of-vocabulary
(OOV) terms: words that are missing from the LVCSR vocab-
ulary. Since many OOVs are proper names (66% of the OOVs
in our corpus are named entities,) OOV recognition errors are
particularly damaging for NER.

In this work, we improve speech NER by allowing the tag-
ger to identify incorrectly decoded sections of speech where a
named entity was spoken. Finding such audio regions allows
for targeted manual transcription, or automated OOV recovery
efforts. To recognize OOV NEs, we augment the features in
an NER system to include indications of possible OOVs in the
transcript using an OOV detection system [6]. These features
yield significant improvements for OOV NEs in particular, as
well as NEs in general.

To evaluate our approach, we introduce a new broadcast
news speech data set annotated for named entities using Ama-
zon Mechanical Turk. We describe the methods used to create
this data set and its properties. Additionally, we provide these
collected annotations to encourage research in this area.
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2. Named Entity Recognition for OOVs

No matter the vocabulary size, LVCSR systems will encounter
and mis-recognize OOVs, especially in new domains or genres.
These often include named entities; in our English broadcast
news data set 66% of the OOVs are named entities, accounting
for 21% of all named entities. This problem is often ignored
in NER in speech [7, 4]; and some cope with OOV entities by
adapting the vocabulary and the language model to the specific
time interval of the test set [8].

To recognize OOV NEs, we augment a standard NE tagger
to include features indicative of OOV terms. The tagger should
ignore the decoded words for OOV regions and rely on context
to identify the named entity. For example, if the tagger sees the
string “FORMER PRESIDENT MOST OF IT SAID” it would
likely find no named entity. However, “MOST OF IT” is an ob-
vious transcription error (for “MILOSEVIC”) and if the tagger
knew “MOST OF IT” was OOV, it could focus on context (“For-
mer President X said”) and identify the audio corresponding to
“X” as a named entity.

Our work is similar to that of Huang [3] and Sudoh et al.[4]
Huang uses a confidence based approach to identify transcript
errors and ignores the decoded word sequence in the error re-
gion, using the context to query relevant documents for OOV
recovery. He uses features from the recovered word and its con-
text as input for a standard NER system. In this work, we are
concerned with identification and not recovery. However, iden-
tified named entities in incorrectly transcribed audio could be
targeted for recovery using an OOV recovery system [9]. Both
Huang and Sudoh et al. rely on the word posterior probability
as a confidence metric. Sudoh et al. combine this metric with
the decoded word sequence and contextual POS tag information
using SVMs to detect unreliable regions. We consider a similar
approach (errordet) as a baseline.

Our approach uses the output of an OOV detector as in-
dicative of NE regions. In the next section, we introduce our
NE tagger and describe how we incorporate OOV information.

2.1. Named Entity Tagger and OOV Detector

We use a conditional random field (CRF) based named entity
tagger [10], with a first order Markov model, BIO encoding (B-
ORG, I-ORG, etc.), and a standard set of orthographic features
[11] (Baseline). We used the default parameters in Mallet "and
a Gaussian prior of o = 10 (results were generally insensi-
tive to 0.) The number of training iterations was selected using
development data. On CONLL 2003 English data [1], the tag-
ger achieves an overall development F1 of 88.34 and test F1 of
81.41, which is close to state of the art on this task.

Uhttp://mallet.cs.umass.edu
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Figure 1: Test set (90 hours) performance: Error detector [4] on
errors (top) and OOV detector [6] on OOVs (bottom.)

We use an OOV detector to incorporate OOV information
into the tagger. Parada et al. [6] introduced a state of the art
confidence based OOV detector using features from a hybrid
LVCSR system, combining words and sub-word units (variable
length phone sequences). This was combined with confidence
estimates from the confusion network (word entropy in each
confusion network region) as well as contextual features, such
as adjacent words, language model scores, etc. These features
are used in a CRF to tag confusion network bins as OOV or IV.
We obtained the same training splits as Parada et al. to match
their OOV detector results (Figure 1.)

Several of the baseline NER features use part of speech
tags. Since most POS taggers are trained for text, we obtained
tags for speech by using a syntactic language model [12, 13],
which estimates the joint probability of the word and its syntac-
tic tag based on the preceding words and tags (a trigram con-
text.) This tagger can produce tags for suspected OOVs.

We trained the language model on 130 million words from
Hub4 CSR 1996 [14]. Tags, extracted from parse trees from
a modified Berkeley parser [15], incorporated the word’s POS,
the label of its immediate parent, and the relative position of
the word among its siblings. > Since we are considering OOV
detection, the language model was restricted to the LVCSR sys-
tem’s vocabulary.

2.2. Confidence Baseline

A common approach to improve NER performance on speech
is to incorporate a confidence estimate for predicting decoding
errors (such as those caused by OOVs) [3, 4] . Therefore, we
compare our approach with both a baseline NER feature set de-
scribed in Section 2.1, and with an additional confidence esti-
mate baseline (Figure 1.)

The confidence baseline uses the features of Sudoh et al.
[4] to create a CRF error predictor: the decoded word, POS
tag, and posterior probability, as well as these features from a
+2 word window. This system shows superior error detection
performance to only using the word posterior probability. The
training data was obtained from a standard word-based LVCSR
system whose errors are known by aligning with the reference
transcription. The probability of error, provided by the CRF
error predictor, was quantized into 10 bins generating binary
features (errordet).

2The parent tagset of Filimonov and Harper [13].

2.3. NER with OOVs

We incorporate OOV information into the NER tagger by gen-
erating features based on the OOV detector. Our goal was to
inform the NER tagger when we suspected that a word may be
an OOV, which could make it more likely to be a named entity.
We also sought to remove unreliable features, i.e. incorrectly
decoded words. We developed three feature sets:

e oovdet: The probability of a word being OOV according
to the OOV detector (Section 2.1).>

e context: The oovdet confidence feature from a +2 word
window around the current word.

e replace: Replace the decoded word with the token OOV
if the detector has a confidence threshold above 0.9
(tuned on development data.) This explicitly removes
the confusion of an incorrectly decoded word, and the
system must rely on the context to tag the words, as well
as a prior that OOVs may be NEs.

3. Experiment Setup

To focus attention on the OOV problem, we used the data set
constructed by Can et al. [16], originally designed to evalu-
ate Spoken Term Detection (STD) of OOVs (oovcorp.) The
corpus contains 100 hours of transcribed English broadcast
news speech emphasizing OOVs. There are 1290 unique
OOVs in the corpus, which were selected with a mini-
mum of 5 acoustic instances per word. Example OOVs
include: PUTIN, QAEDA, HOLLOWAY, COROLLARIES,
HYPERLINKED, NATALIE. Short OOVs (lessthan 4 phones)
inappropriate for STD were explicitly excluded. This resulted
in roughly 24K (2%) OOV tokens.

We used the IBM Speech Recognition Toolkit [17]* to ob-
tain a transcript of the audio. Acoustic models were trained on
300 hours of HUB4 data [18] and utterances containing OOV
words as marked in 00OvCORP were excluded. The language
model was trained on 400M words from various text sources
with a 83K word vocabulary. The LVCSR system’s WER on
the standard RT04 BN test set was 19.4%.

Excluded utterances amount to 100 hours. Five hours were
used for training the OOV and error detectors, and 48 hours
were annotated for named entity training and evaluation. From
this set, 25 hours were used for NE tagger training, 5 hours for
development, and the remaining 18 hours for testing. Both train
and test sets have a 2% OOV rate.

Since our features are based on sub-word units, we used
a hybrid LVCSR system. Sub-word units are variable length
phone sequences derived using Rastrow et al. [19]. The vocabu-
lary of a hybrid LVCSR system contains a word and a sub-word
lexicon; sub-words are used to represent OOVs in the language
model text. Language model training text is obtained by replac-
ing low frequency words (assumed OOVs) by their fragment
representation. Pronunciations for OOVs are obtained using
grapheme to phoneme models (see Rastrow et al.) Our hybrid
system’s lexicon has 83K words, 20K sub-words. The 1290 ex-
cluded words are OOVs to both the word and hybrid systems.
Features were extracted from confusion networks from the word
and hybrid LVCSR systems.

3Real valued features were quantized into 10 bins (binary features.)
4The IBM system used speaker adaptive training based on maximum
likelihood with no discriminative training.



Overall 1V entities OOV entities Unobserved OOVs

(e]0)% System F1 | Prec | Rec | F1 | Prec | Rec | F1 | Prec | Rec | F1 | Prec | Rec
- Baseline 58.5 | 647 | 53.3 | 599 | 64.6 | 559 | 51.0 | 63.4 | 42.7 | 299 | 41.5 | 234
errordet 58.6 | 66.5 | 524 | 60.2 | 669 | 547 | 51.3 | 63.8 | 429 | 36.8 | 50.5 | 28.9

Auto oovdet 60.1 | 66.4 | 549 | 61.7 | 66.6 | 575 | 529 | 644 | 449 | 37.5 | 49.5 | 30.1
oovdet+context 59.8 | 66.1 | 546 | 61.0 | 65.8 | 56.8 | 542 | 66.6 | 45.7 | 33.7 | 45.8 | 26.7
oovdet+replace 59.8 | 679 | 535 | 614 | 683 | 557 | 52.4 | 65.1 | 439 | 35.6 | 48.0 | 28.3
oovdet+context+replace 60.7 | 68.2 | 547 | 62.2 | 684 | 57.1 | 53.6 | 66.2 | 45.1 | 37.7 | 50.5 | 30.1

Oracle | oov 61.7 | 682 | 564 | 61.7 | 70.2 | 55.0 | 61.2 | 62.5 | 60.0 | 47.2 | 479 | 46.5
oov-+oovdet+context+replace | 62.3 | 68.0 | 57.5 | 62.1 | 68.6 | 56.8 | 61.7 | 659 | 58.0 | 52.0 | 54.1 | 50.0

Table 1: Performance for all named entities (Overall), for entities containing all words in the LVCSR vocabulary (In-Vocabulary or IV
entities), for entities containing at least one OOV word (OOV entities), and for OOV entities which are not present in training for NER

system (Unobserved OOVs).

3.1. Named Entity Annotations

The 48 hours set aside for named entity training and evalua-
tion did not contain named entity annotations. We annotated
this data using Amazon Mechanical Turk (MTurk), which pro-
vides a platform where human intelligence tasks (HITs) can be
given to users (turkers) for annotation. HITs tend to be sim-
ple tasks that are easy for humans to accomplish but remain
challenging for computers, such as labeling images or translat-
ing sentences. Turkers are paid a micro-payment for each HIT,
typically a few cents. Studies have shown that high quality an-
notations are possible by using multiple turkers, simple HITs,
and embedded gold standard examples to evaluate quality [20].

We used MTurk to obtain named entity labels for the man-
ual speech transcripts from our corpus. Our annotation guide-
lines were based on the CONLL shared task [1]. We used an
interface similar to that presented in Finin et al. [21], modified
to allow users to indicate the presence of two adjacent named
entities of the same type, such as “Thanks Jim Sarah report-
ing live from Boston”. Here Jim and Sarah are two different
people with a pause in the speech that does not appear in the
transcript. Such occurrences are exceedingly rare in text, but
common in speech where pauses or speaker turn taking creates
sequential named entities. Each HIT contained 5 speech utter-
ances, 1 of which was an utterance chosen from 250 utterances
for which we obtained expert NE annotation (provided by the
authors) included for quality control. Each HIT was completed
by two different turkers at a rate of $0.10 each, yielding a rate of
$0.02 an utterance. Utterances completed by unreliable turkers
(poor scores on the included gold examples) were resubmitted
to obtain additional annotations. Total cost was $530, includ-
ing repeated annotations and productivity bonuses. Details on
annotation instructions are in the Appendix.

For each turker, we evaluated his or her average F1 score
on gold utterances and removed annotations by turkers with an
F1 score below 0.5. We then compared the two annotations for
each utterance and selected labels agreed to by both turkers. In
cases of dispute, we select the label assigned by the turker with
highest F1. This yielded a total of 9971 annotated utterances
(510K tokens). The inter-annotator agreement between turkers
computed using Cohen’s x [22] was 723

The average F1 score of the final turker annotations on the
257 utterances with gold annotations was 87%. The 9971 utter-
ances contain 34,293 named entities, 14,967 people, 10,680 lo-
cations and 8,646 organizations. In this data, 21% of the named
entities are OOVs (38.32% of PER, 6% of LOC, and 14% of
ORG) and 66% of the OOVs are named entities.

SKappa coefficient can be interpreted as: 0 — .2 slight, .2 — .4 fair,
.4 — .6 moderate, .6 — .8 substantial and higher is almost perfect [23].

4. Results

We evaluated our named entity tagger with the various OOV
feature sets and two baselines: standard NER features (base-
line), and the addition of error detection features (errordet).
We report F1 results overall, for entities containing all words
in the vocabulary (In-Vocabulary or IV entities), and for en-
tities containing at least one OOV word (OOV entities) (Ta-
ble 1). While the error detector (errordet) yields a small im-
provement (0.15), the equivalent OOV features (oovdet) yield a
much larger improvement (1.67). Using all of our OOV fea-
tures (oovdet+context+replace) achieves a 2.25 improvement
over the baseline.® Example improvements included the ut-
terance “opposition claims VOJISLAV KOSTUNICA should
be declared winner”, which is decoded as: “opposition claims
BORISLAV CUSTOM ME JUST should be declared win-
ner”. The named entity “VOJISLAV KOSTUNICA” is mis-
recognized because both words are OOVs, but the improved
system correctly labeled it as a person.

Note that in our data set partitioning, the tagger may learn
the context of an OOV in the NER training set, which matches
the context for that same OOV in test, allowing the system to
correctly label it as an entity. However, in a real application,
with a constantly changing vocabulary, OOVs seen during the
tagger training are likely to be different from those in the test
set. To evaluate this scenario, we report performance of “Unob-
served OOV” entities: named-entities containing words which
are not in the recognizer’s vocabulary, and are unobserved in
the training set for the OOV detector or NER training and de-
velopment set. These words only appear in the test set, never
in the training or development set. As expected, the perfor-
mance for these entities is lower than the overall OOV perfor-
mance, however the proposed system (oodet+context+replace)
achieves a 7.8 absolute improvement over the baseline (29.9 to
37.7). Eighteen percent of all OOV entities in the test-set were
Unobserved.

Additionally, we achieve improvements in performance for
IV entities, where there is a large increase in precision (64.58
to 68.42). We attribute this gain to the fact that now the learner
is not forced to mark common word strings like “most of it”
(for MILOSEVIC) or “custom me just” (for KOSTUNICA) as
named entities unless the OOV features indicate otherwise. Fur-
thermore, these incorrectly decoded words are replaced by OOV,
removing misleading features.

We also sought to determine additional gains we might
achieve by improved OOV detection. We replaced the OOV
detector by an oracle predictor, manually tagging OOV regions

SStatistically significant at p = 0.001 using the paired permutation
test.



by finding time segments in the manual transcripts containing
words which are not in the LVCSR system vocabulary. True
OOV regions were marked with a new feature (oov.) The
best performance was obtained when adding this oracle OOV
feature, replacing the decoded word by “OOV” if this feature
fires, and including the context feature described in Section 2.3
(oov+oovdet+context+replace). This improves an additional
8.08 points on OOVs over the best OOV predictor results, and
1.61 improvement overall. This demonstrates that our auto-
matic results achieve an almost 60% error reduction towards
oracle OOV detection. Additionally, the oracle results achieve
similar performance for OOV and IV, indicating that remaining
NER errors may not be attributed to OOVs and that given cor-
rect OOV predictions, our NE tagger effectively addresses the
OOV NER problem.

5. Conclusion

We have presented a novel approach for OOV sensitive named
entity recognition in automatically transcribed speech, targeting
NEs containing words which are not present in the LVCSR sys-
tem’s vocabulary. We augmented the features used by a CRF
NER tagger to indicate possible OOVs in the transcript. Our
system obtains a statistically significant improvement in overall
performance using automatic OOV detection and our automatic
results achieve an almost 60% error reduction over the baseline
compared to oracle results. Additionally, we show that oracle
OOV features close the gap between IV and OOV NER per-
formance. Finally, we introduced a new broadcast news speech
data set annotated for named entities using Amazon Mechanical
Turk (available online at time of publication.)
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A. Annotation Guidelines

The following directions were provided to Turkers.
An entity is a object in the world like a place or person. A named entity
is a phrase that uniquely refers to an object by its proper name (Hillary
Clinton), acronym (IBM) or abbreviation (Minn.). Here are some more
examples of named entities for each of the types we are interested in.
Note that there is no capitalization in the sentences.
e Person: first, middle, and last names of people, animals and
fictional characters.
Person examples: barack obama; palins; john; terry lewis;

e Organization: companies, brands, political movements, govern-
ment bodies (councils, courts, ministries), musical companies,
public organizations (schools, universities, charities), other col-
lections of people (sport clubs, associations, etc.)

Organization examples: c.n.n., the white house, congress., val-
ujet; the washington post; oxford university (when considered
in context as an organization);

e Place: roads, regions (towns, cities, countries, etc.), natural lo-
cations (mountains, valleys, national parks, etc.), public places
(squares, museums, airports, stations, hospitals, parks, universi-
ties, etc.), commercial places (pubs, restaurants, hotels, etc.), as-
sorted buildings (houses, halls, rooms, castles), abstract places
(“the free world”)

Place examples: baltimore, md; washington; dade county,
florida; mt. everest; hoover dam; u.s.; oxford university (when
considered in context as a location);



