We typically have seminars on Wednesday at noon in Malone 228. All seminar announcements will be sent to the theory mailing list.

Speaker: Ran Ben Basat

Affiliation: Technion

Title: Classic Network Measurement meets Virtual Switching

Abstract: In modern cloud infrastructures, each physical server often runs multiple virtual machines and employs a software Virtual Switch (VS) to handle their traffic. In addition to switching, the VS performs network measurements, such as identifying the most frequent flows, which are essential for networking applications such as load balancing and intrusion detection.

Unlike traditional streaming algorithms, which minimize the space requirements, the bottleneck in virtual switching measurement is the CPU utilization. In this talk, I will present new hardware-oriented algorithms and acceleration methods that optimize the update time for software, at the cost of a slight memory overhead.

Bio: Ran is a Ph.D. candidate at the Technion, Israel. He does research in streaming algorithms for networking applications, focusing on efficient processing and query speeds.

Speaker: Samson Zhou

Affiliation: Purdue University

Title: Pattern Matching over Noisy Data Streams

Abstract: The identification of low-complexity structure in strings is a fundamental building block for many algorithms in computational biology or natural language processing. The general paradigm in these algorithms is to find either highly repetitive structure, in the form of periodicity or palindromes in a pre-processing stage, to filter out locations where a certain pattern cannot occur, thus improving efficiency.

Unfortunately, we must expect massive data to contain a number of small imperfections, such as through human error or mutations. This motivates the need to study structure in models of sublinear space, resilient to sources of noise. In this talk, we introduce several types of structure and noise, and discuss efficient algorithms to identify these structures over data streams.

As a warm-up, we provide an algorithm for identifying a longest common aligned substring of two inputs, resilient up to d errors of insertions, substitutions, or deletions. We then present a streaming algorithm for identifying the longest palindrome, resilient up to a threshold of d substitution errors. Finally, we discuss the problem of finding all periods of a string including up to d persistent changes or erasures. For each of these scenarios, we also provide complementary lower bounds.

Joint work with Funda Ergun, Elena Grigorescu, and Erfan Sadeqi Azer.

BIO:

Samson is a PhD candidate in the Department of Computer Science at Purdue University, under the supervision of Greg Frederickson and Elena Grigorescu. He received his undergraduate education at MIT, where he obtained a Bachelor’s in math and computer science, as well as a Master’s in computer science. He is a member of the Theory Group at Purdue, and his current research interests are sublinear and approximation algorithms, with an emphasis on streaming algorithms.

Speaker: Venkata Gandikota

Affiliation: Johns Hopkins University

Title: NP-Hardness of Reed-Solomon Decoding and the Prouhet-Tarry-Escott Problem

Abstract: Establishing the complexity of Bounded Distance Decoding for Reed-Solomon codes is a fundamental open problem in coding theory, explicitly asked by Guruswami and Vardy (IEEE Trans. Inf. Theory, 2005). The problem is motivated by the large current gap between the regime when it is NP-hard, and the regime when it is efficiently solvable (i.e., the Johnson radius).

We show the first NP-hardness results for asymptotically smaller decoding radii than the maximum likelihood decoding radius of Guruswami and Vardy. Specifically, for Reed-Solomon codes of length N and dimension K = O(N), we show that it is NP-hard to decode more than N-K-O(log N / log log N) errors.

These results follow from the NP-hardness of a generalization of the classical Subset Sum problem to higher moments, called Moments Subset Sum, which has been a known open problem, and which may be of independent interest. We further reveal a strong connection with the well-studied Prouhet-Tarry-Escott problem in Number Theory, which turns out to capture a main barrier in extending our techniques. We believe the Prouhet-Tarry-Escott problem deserves further study in the theoretical computer science community.

This is a joint work with Badih Ghazi (MIT) and Elena Grigorescu (Purdue).

Speaker: Amirbehshad Shahrasbi

Affiliation:Carnegie Mellon University

Speaker: Samson Zhou

Affiliation: Purdue University

Title: Password Hashing and Graph Pebbling

Abstract: Although the passwords of users are no longer being stored, we show an offline attacker is compelled to crack all stolen passwords under current security recommendations. Memory hard functions have been proposed as moderately expensive cryptographic tools for password hashing. The cryptanalysis of these functions has focused on the cumulative memory complexity and the energy complexity of the function. The first metric measures how much memory users must commit to evaluating a function, while the second metric measures how much energy users must commit. We prove these evaluations reduce to pebbling games on graphs but show that a tool for exact cryptanalysis of functions is unlikely to exist. Nevertheless, we provide asymptotic upper and lower bounds on several families of functions, including Argon2i, the winner of the password hashing competition that is currently being considered for standardization by the Cryptography Form Research Group of the Internet Research Task Force.

Joint work with Jeremiah Blocki, Ben Harsha, Ling Ren

BIO:

Samson is a PhD candidate in the Department of Computer Science at Purdue University, under the supervision of Greg Frederickson and Elena Grigorescu. He received his undergraduate education at MIT, where he obtained a Bachelor’s in math and computer science, as well as a Master’s in computer science. He is a member of the Theory Group at Purdue and a winner of the Sigma Xi Research Awards Competition for graduate students in engineering. His current research interests are sublinear and approximation algorithms, with an emphasis on streaming algorithms.

Speaker: Sai Lakshmi Bhavana Obbattu

Affiliation: IISC Bangalore, India

Title: Privacy Amplification from Non-malleable Codes

The goal of a Privacy Amplification (PA) protocol is to allow two parties, who start out sharing a non-uniform secret ‘w’, to agree on a uniform secret ‘k’, in the presence of a computationally unbounded man-in-the-middle adversary. An interactive PA protocol is rated based on three parameters: 1) Number of rounds, 2) Entropy loss (entropy of w – |k|), and 3) Min-entropy requirement for w, while the asymptotically optimal parameters are 2, O(s) and O(s+log n) respectively (where s is the security parameter and n =|w|). There have been two popular approaches to solve this problem: one using use bit authentication protocols and the other using non-malleable extractors, but none of the prior protocols using these approaches had all asymptotically optimal parameters.

We give an alternate approach to solve the problem using Non-malleable Codes (NMCs). This approach results in a 8-round protocol with min-entropy requirement O(s+log n) and an entropy loss of O(s log s). Augmented NMCs with better parameters would result in optimal entropy loss of O(s). Our result is one of the first information theoretic applications of NMCs. In this talk, I will introduce NMCs and show connection of NMCs to PA.

In a concurrent and independent work, Xin Li gives a protocol with asymptotically optimal parameters based on non-malleable extractors. Because all known approaches have large hidden constants, exploring alternatives is necessary if we hope to get practical concrete parameters

The talk is based on:

Eshan Chattopadhyay, Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu and Sruthi Sekar. Privacy Amplification from Non-malleable Codes. (eprint.iacr.org/2018/293)

Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu and Sruthi Sekar. Non-malleable Randomness Encoders and their Applications (Eurocrypt 2018)

Bio: Sai Lakshmi Bhavana Obbattu is a doctoral student at Indian Institute of Science(IISc), Bangalore, advised by Dr. Bhavana Kanukurthi. Her publication venues include the Theory of Cryptography Conference (TCC) and Eurocrypt. Her TCC publication on Four-state Non-malleable Codes was invited to the Journal of Cryptology. She received her Integrated Dual Degree (B.Tech and M.Tech) from IIT(BHU), Varanasi. Her research interests include Non-malleable codes, Privacy Amplification and Applied Multi-party computation.

Speaker: Akash Kumar

Affiliation: Purdue University

Location: Malone 338 (note change of location)

Title:

Finding Minors in Sublinear time in Bounded degree graphs with (almost) optimal one-sided query complexity.

Abstract:

Let G be an undirected, bounded degree graph with n vertices. Fix a finite graph H, and suppose one must remove \varepsilon n edges from G to make it H-minor free (for some small constant \varepsilon > 0). We give an n^{1/2+o(1)}-time randomized procedure that, with high probability, finds an H-minor in such a graph. For an example application, suppose one must remove \varepsilon n edges from a bounded degree graph G to make it planar. This result implies an algorithm, with the same running time, that produces a K_{3,3} or K_5 minor in G. No sublinear time bound was known for this problem, prior to this result.

By the graph minor theorem, we get an analogous result for any minor-closed property. Up to n^{o(1)} factors, this resolves a conjecture of Benjamini-Schramm-Shapira (STOC 2008) on the existence of one-sided property testers for minor-closed properties. Furthermore, our algorithm is nearly optimal, by an \Omega(\sqrt{n}) lower bound of Czumaj et al (RSA 2014).

Prior to this work, the only graphs H for which non-trivial property testers were known for H-minor freeness are the following: H being a forest or a cycle (Czumaj et al, RSA 2014), K_{2,k}, (k\times 2)-grid, and the k-circus (Fichtenberger et al, Arxiv 2017).

(Joint work with C. Seshadhri and Andrew Stolman).

Welcome and Introductions

Speaker: Zhengzhong Jin

Affiliation: JHU

Title: Deterministic Document Exchange Protocols, and Almost Optimal Binary Codes for Edit Errors

Abstract:

We study two basic problems regarding edit error, i.e. document exchange and error correcting codes for edit errors (insdel codes). For message length n and edit error upper bound k, it is known that in both problems the optimal sketch size or the optimal number of redundant bits is Θ(k log n/k). However, known constructions are far from achieving these bounds.

We significantly improve previous results on both problems. For document exchange, we give an efficient deterministic protocol with sketch size O(k log^2 n/k). This significantly improves the previous best known deterministic protocol, which has sketch size O(k^2+k log^2 n). For binary insdel codes, we obtain the following results:

1. An explicit binary insdel code which encodes an n-bit message x against k errors with redundancy O(k log^2 n/k). In particular this implies an explicit family of binary insdel codes that can correct ε fraction of insertions and deletions with rate 1−O(ε log^2(1/ε))=1−\tilde {O}(ε).

2. An explicit binary insdel code which encodes an n-bit message x against k errors with redundancy O(k log n). This is the first explicit construction of binary insdel codes that has optimal redundancy for a wide range of error parameters k, and this brings our understanding of binary insdel codes much closer to that of standard binary error correcting codes.

In obtaining our results we introduce the notion of ε-self matching hash functions and ε-synchronization hash functions. We believe our techniques can have further applications in the literature.

Speaker: Marius Zimand

Affiliation: Towson University

Title: An operational characterization of mutual information in algorithmic information theory

Abstract: An operational interpretation of the concept of mutual information in the framework of Kolmogorov complexity has been elusive till now. We show that the mutual information of any pair of strings x and y is equal, up to logarithmic precision, to the length of the longest shared secret key that two parties, one having x and the complexity profile of the pair and the other one having y and the complexity profile of the pair, can establish via a probabilistic protocol with interaction on a public channel. We establish the communication complexity of secret key agreement protocols that produce a secret key of maximal length, for protocols with public randomness. We show that if the communication complexity drops below the established threshold then only very short secret keys can be obtained.

This is joint work with Andrei Romashchenko.