Lecture 9: Disjoint Sets / Union-Find

Michael Dinitz

September 29, 2020
601.433/633 Introduction to Algorithms
Introduction

Informal: Universe of elements, want to maintain *disjoint sets*.

Slightly more formally:

- **Make-Set**(*x*): create a new set containing just *x* (i.e., \{*x*\})
- **Union**(*x*, *y*): Replace set containing *x* (**S**) and set containing *y* (**T**) with single set **S **∪ **T**
- **Find**(*x*): Return *representative* of set containing *x*
Introduction

Informal: Universe of elements, want to maintain *disjoint sets*.

Slightly more formally:
- Make-Set(x): create a new set containing just x (i.e., $\{x\}$)
- Union(x, y): Replace set containing x (S) and set containing y (T) with single set $S \cup T$
- Find(x): Return *representative* of set containing x

Rules: every set has a *unique* representative.
- If x and y are in same set, Find(x) = Find(y)
- If x and y are in different sets, then Find(x) \neq Find(y)
- Make-Set(x): cannot be called on the same x twice
Introduction

Informal: Universe of elements, want to maintain *disjoint sets*.

Slightly more formally:

- **Make-Set**(\(x\)): create a new set containing just \(x\) (i.e., \(\{x\}\))
- **Union**(\(x, y\)): Replace set containing \(x\) (\(S\)) and set containing \(y\) (\(T\)) with single set \(S \cup T\)
- **Find**(\(x\)): Return *representative* of set containing \(x\)

Rules: every set has a *unique* representative.

- If \(x\) and \(y\) are in same set, \(\text{Find}(x) = \text{Find}(y)\)
- If \(x\) and \(y\) are in different sets, then \(\text{Find}(x) \neq \text{Find}(y)\)
- **Make-Set**(\(x\)): cannot be called on the same \(x\) twice

Note: disjoint (and partition) by construction!
Introduction (II)

We’ll see a few ways of doing this, from efficient to very efficient. CLRS: extremely efficient
We’ll see a few ways of doing this, from efficient to very efficient. CLRS: extremely efficient

Nice thing about Union-Find: don’t hit a limit to improvement for a very long time!
We’ll see a few ways of doing this, from efficient to very efficient.
CLRS: extremely efficient

Nice thing about Union-Find: don’t hit a limit to improvement for a very long time!

Notation and Notes:
- \(m \) operations total
- \(n \) of which are Make-Sets (so \(n \) elements)
- Assume have pointer/access to elements we care about (like last class)
First Approach: Lists

Linked list for each set.

- Representative of set is head (first element on list)
- Each element has pointer to head and to next element, so stored as triple: (element, head, next)

```
S:
```

```
Make-Set(x): Find(x): return x → head
```
First Approach: Lists

Linked list for each set.

- Representative of set is head (first element on list)
- Each element has pointer to head and to next element, so stored as triple: (element, head, next)

```
S: [\[\] \[\] x z]
```

```
Make-Set(x):
```

```
x head next
```
First Approach: Lists

Linked list for each set.

- Representative of set is head (first element on list)
- Each element has pointer to head and to next element, so stored as triple: (element, head, next)

S:

Make-Set(x):

Find(x): return x → head
Union(x, y)

Obvious approach:
- Walk down S to final element z (starting from x)
- Set $z \rightarrow \text{next} = y \rightarrow \text{head}$
- Walk down T, set every elements head pointer to $x \rightarrow \text{head}$
Union(x, y)

Running time: $O(S + T)$

- Walk down S to final element
- Walk down T resetting head pointers

Since S and T could be $O(n)$, can only say $O(n)$ for Unions
Union(x, y)

Running time: $O(S + T)$

- To walk down S to final element
- To walk down T and reset head pointers

Since S, T could be $\mathcal{O}(n)$, can only say $O(n)$ for Unions
Union(x, y)

Running time:

$O(S + T)$

Since S, T could be $\mathcal{O}(n)$, can only say $O(n)$ for Unions.
Union(x, y)

Running time: $O(|S| + |T|)$
Union(x, y)

Running time: $O(|S| + |T|)$
- $|S|$ to walk down S to final element
- $|T|$ to walk down T resetting head pointers
Union(x, y)

Running time: $O(|S| + |T|)$
- $|S|$ to walk down S to final element
- $|T|$ to walk down T, resetting head pointers

Since $|S|, |T|$ could be $\Theta(n)$, can only say $O(n)$ for Unions
Improved Union \((x, y)\)

Observation: don’t need to preserve ordering inside the Union!
Improved Union(x, y)

Observation: don’t need to preserve ordering inside the Union!
- Splice T into S right after x

Running time: $O(T)$

Still can’t say anything better than $O(n)$
Improved Union \((x, y)\)

Observation: don’t need to preserve ordering inside the Union!

- Splice \(T\) into \(S\) right after \(x\)

Running time:
Improved Union(x, y)

Observation: don’t need to preserve ordering inside the Union!

- Splice T into S right after x

Running time: $O(|T|)$
Improved Union\((x, y)\)

Observation: don’t need to preserve ordering inside the Union!

- Splice \(T\) into \(S\) right after \(x\)

![Diagram](image)

Running time: \(O(|T|)\)

- Still can’t say anything better than \(O(n)\)
Even more improved $\text{Union}(x, y)$

Observation: Why splice T into S? Could also splice S into T.

- Time $O(|S|)$
Even more improved Union(x, y)

Observation: Why splice T into S? Could also splice S into T.
- Time $O(|S|)$

Splice smaller into bigger!
- Store size of set in head node.
- Splice smaller into bigger: time $O(\min(|S|, |T|))$
- *Still* only $O(n)$. But now can make stronger amortized guarantee!
Even more improved **Union**(*x*, *y*)

Observation: Why splice **T** into **S**? Could also splice **S** into **T**.

- Time \(O(|S|)\)

Splice smaller into bigger!

- Store size of set in head node.
- Splice smaller into bigger: time \(O(\min(|S|,|T|))\)
- *Still* only \(O(n)\). But now can make stronger amortized guarantee!

Theorem

The amortized cost of Find and Union is \(O(1)\), and the amortized cost of Make-Set is \(O(\log n)\).

Corollary

The total running time is \(O(m + n \log n)\).
Amortized Analysis of List Algorithm

Banking/accounting argument: bank for every element

- When an element is created (via Make-Set), add \(\log n \) tokens to its bank
- Find does not affect banks
- When doing Make-Set, take token from bank of each element in smaller set.
Amortized Analysis of List Algorithm

Banking/accounting argument: bank for every element

- When an element is created (via Make-Set), add \(\log n \) tokens to its bank
- Find does not affect banks
- When doing Make-Set, take token from bank of each element in smaller set.

Obvious: initially, total bank is 0 (no elements).
Amortized Analysis of List Algorithm

Banking/accounting argument: bank for every element

- When an element is created (via Make-Set), add $\log n$ tokens to its bank
- Find does not affect banks
- When doing Make-Set, take token from bank of each element in smaller set.

Obvious: initially, total bank is 0 (no elements).

Lemma

No bank is ever negative.

Proof.

Fix element e. Starts with $\log n$ tokens. When do we remove a token?
Amortized Analysis of List Algorithm

Banking/accounting argument: bank for every element

- When an element is created (via Make-Set), add $\log n$ tokens to its bank
- Find does not affect banks
- When doing Make-Set, take token from bank of each element in smaller set.

Obvious: initially, total bank is 0 (no elements).

Lemma

No bank is ever negative.

Proof.

Fix element e. Starts with $\log n$ tokens. When do we remove a token?

- When in smaller set of a Union.
Amortized Analysis of List Algorithm

Banking/accounting argument: bank for every element

- When an element is created (via Make-Set), add \(\log n \) tokens to its bank
- Find does not affect banks
- When doing Make-Set, take token from bank of each element in smaller set.

Obvious: initially, total bank is 0 (no elements).

Lemma

No bank is ever negative.

Proof.

Fix element \(e \). Starts with \(\log n \) tokens. When do we remove a token?

- When in smaller set of a Union.
- Size of set containing \(e \) at least doubles!
Amortized Analysis of List Algorithm

Banking/accounting argument: bank for every element

- When an element is created (via Make-Set), add $\log n$ tokens to its bank
- Find does not affect banks
- When doing Make-Set, take token from bank of each element in smaller set.

Obvious: initially, total bank is 0 (no elements).

Lemma

No bank is ever negative.

Proof.

Fix element e. Starts with $\log n$ tokens. When do we remove a token?

- When in smaller set of a Union.
- Size of set containing e at least doubles!
- Can only happen at most $\log n$ times.
Amortized Analysis of List Algorithm (cont’d)

Make-Set:
- True cost: \(O(1)\)
- Change in banks: \(\log n\)

\[\Rightarrow \text{Amortized cost: } O(1) + O(\log n) = O(\log n)\]

Find:
- True cost: \(O(1)\)
- Change in banks: \(0\)

\[\Rightarrow \text{Amortized cost: } O(1) + 0 = O(1)\]

Union:
- True cost: \(\min(|S|, |T|)\)
- Change in banks: \(-\min(|S|, |T|)\)

\[\Rightarrow \text{Amortized cost: } \min(|S|, |T|) - \min(|S|, |T|) = 0 = O(1)\]
Starting idea: want to make Unions faster, willing to make Finds a little slower.

- Slow part of Union: updating all head pointers in smaller list.
- Don’t do it!
Even Better

Starting idea: want to make Unions faster, willing to make Finds a little slower.

- Slow part of Union: updating all head pointers in smaller list.
- Don’t do it!
- Results in trees rather than lists (can drop next pointer)
Even Better

Starting idea: want to make Unions faster, willing to make Finds a little slower.

- Slow part of Union: updating all head pointers in smaller list.
- Don’t do it!
- Results in trees rather than lists (can drop next pointer)

Finds slow: need to walk up tree
Even Better

Starting idea: want to make Unions faster, willing to make Finds a little slower.

- Slow part of Union: updating all head pointers in smaller list.
- Don’t do it!
- Results in trees rather than lists (can drop next pointer)

Finds slow: need to walk up tree

- Use *this* time to “update head” pointers: on Find(x), change pointers of x and all ancestors to point to root
- *Path Compression*
Even Better

Starting idea: want to make Unions faster, willing to make Finds a little slower.
 - Slow part of Union: updating all head pointers in smaller list.
 - Don’t do it!
 - Results in trees rather than lists (can drop next pointer)

Finds slow: need to walk up tree
 - Use *this* time to “update head” pointers: on Find(*x*), change pointers of *x* and all ancestors to point to root
 - *Path Compression*

Idea 2: *Union By Rank*
 - Size of set was important for lists, less important for trees.
 - Choose which set to splice into which by *rank* of trees (related to height)
Main Result

Theorem

When using Path Compression and Union By Rank, total time at most $O(m \log^* n)$.

\log^*: iterated \log_2.

- $\log^* n = \#$ times apply \log_2 until get to 1

\log^*: iterated \log_2. Stronger theorem: total time at most $O(m \log^* n)$. \Rightarrow inverse Ackermann function. Grows even slower than \log^*. See CLRS for details.
Main Result

Theorem

When using Path Compression and Union By Rank, total time at most \(O(m \log^* n) \).

\(\log^* \): iterated \(\log_2 \).

- \(\log^* n = \# \) times apply \(\log_2 \) until get to 1
- \(\log^*(2^{65536}) = 1 + \log^*(65536) = 2 + \log^*(16) = 3 + \log^*(4) = 4 + \log^*(2) = 5 \)
Main Result

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>When using Path Compression and Union By Rank, total time at most (O(m \log^* n)).</td>
</tr>
</tbody>
</table>

\(\log^* \): iterated \(\log_2 \).
- \(\log^* n = \# \text{ times apply } \log_2 \text{ until get to } 1 \)
- \(\log^* (2^{65536}) = 1 + \log^* (65536) = 2 + \log^* (16) = 3 + \log^* (4) = 4 + \log^* (2) = 5 \)
- Basically \(\log^* n \) always \(\leq 5 \).
Main Result

Theorem

When using Path Compression and Union By Rank, total time at most $O(m \log^* n)$.

log^*: iterated \log_2.

- $\log^* n = \#\text{ times apply } \log_2 \text{ until get to 1}$
- $\log^*(2^{65536}) = 1 + \log^*(65536) = 2 + \log^*(16) = 3 + \log^*(4) = 4 + \log^*(2) = 5$
- Basically $\log^* n$ always ≤ 5.

Stronger theorem: total time at most $O(m \cdot \alpha(m, n))$.

- $\alpha(m, n)$: inverse Ackermann function. Grows even slower than \log^*.
- See CLRS for details
Formal Procedures: Make-Set and Find

Make-Set(x): Set \(x \rightarrow \text{rank} = 0 \) and \(x \rightarrow \text{parent} = x \)
- Running time: \(O(1) \).

Find(x): Walk from \(x \) to root, and return root. Set parent pointers of \(x \) and all ancestors to root.
- If \(x \rightarrow \text{parent} = x \) then return \(x \).
- Return \(x \rightarrow \text{parent} \).
Formal Procedures: Make-Set and Find

Make-Set(\mathbf{x}): Set $\mathbf{x} \rightarrow \text{rank} = 0$ and $\mathbf{x} \rightarrow \text{parent} = \mathbf{x}$

- Running time: $\mathcal{O}(1)$.

Find(\mathbf{x}): Walk from \mathbf{x} to root, and return root. Set parent pointers of \mathbf{x} and all ancestors to root.

- If $\mathbf{x} \rightarrow \text{parent} = \mathbf{x}$ then return \mathbf{x}
- $\mathbf{x} \rightarrow \text{parent} = \text{Find}(\mathbf{x} \rightarrow \text{parent})$
- Return $\mathbf{x} \rightarrow \text{parent}$
Formal Procedures: Make-Set and Find

Make-Set(x): Set $x \rightarrow \text{rank} = 0$ and $x \rightarrow \text{parent} = x$
 - Running time: $O(1)$.

Find(x): Walk from x to root, and return root. Set parent pointers of x and all ancestors to root.
 - If $x \rightarrow \text{parent} = x$ then return x
 - $x \rightarrow \text{parent} = \text{Find}(x \rightarrow \text{parent})$
 - Return $x \rightarrow \text{parent}$

Running time of Find: depth of x (distance to root)
Find example
Formal Procedure: Union

\textbf{Link}(r_1, r_2): Only applied to root nodes

- If \(r_1 \rightarrow \text{rank} > r_2 \rightarrow \text{rank} \), set \(r_2 \rightarrow \text{parent} = r_1 \)
- If \(r_2 \rightarrow \text{rank} > r_1 \rightarrow \text{rank} \), set \(r_1 \rightarrow \text{parent} = r_2 \)
- If \(r_1 \rightarrow \text{rank} = r_2 \rightarrow \text{rank} \), set \(r_2 \rightarrow \text{parent} = r_1 \) and increment \(r_1 \rightarrow \text{rank} \).

\textbf{Running time of Link}: \(O(1) \)

\textbf{Union}(x, y): \text{Link} (\text{Find}(x), \text{Find}(y))

\textbf{Running time}: depth(x) + depth(y)
Formal Procedure: Union

Link(r_1, r_2): Only applied to root nodes

- If $r_1 \rightarrow \text{rank} > r_2 \rightarrow \text{rank}$, set $r_2 \rightarrow \text{parent} = r_1$
- If $r_2 \rightarrow \text{rank} > r_1 \rightarrow \text{rank}$, set $r_1 \rightarrow \text{parent} = r_2$
- If $r_1 \rightarrow \text{rank} = r_2 \rightarrow \text{rank}$, set $r_2 \rightarrow \text{parent} = r_1$ and increment $r_1 \rightarrow \text{rank}$.

Running time of Link: $O(1)$
Formal Procedure: Union

Link(r_1, r_2): Only applied to root nodes

- If $r_1 \rightarrow \text{rank} > r_2 \rightarrow \text{rank}$, set $r_2 \rightarrow \text{parent} = r_1$
- If $r_2 \rightarrow \text{rank} > r_1 \rightarrow \text{rank}$, set $r_1 \rightarrow \text{parent} = r_2$
- If $r_1 \rightarrow \text{rank} = r_2 \rightarrow \text{rank}$, set $r_2 \rightarrow \text{parent} = r_1$ and increment $r_1 \rightarrow \text{rank}$.

Running time of Link: $O(1)$

Union(x, y): Link(Find(x), Find(y))
Formal Procedure: Union

Link(r_1, r_2): Only applied to root nodes

- If $r_1 \rightarrow \text{rank} > r_2 \rightarrow \text{rank}$, set $r_2 \rightarrow \text{parent} = r_1$
- If $r_2 \rightarrow \text{rank} > r_1 \rightarrow \text{rank}$, set $r_1 \rightarrow \text{parent} = r_2$
- If $r_1 \rightarrow \text{rank} = r_2 \rightarrow \text{rank}$, set $r_2 \rightarrow \text{parent} = r_1$ and increment $r_1 \rightarrow \text{rank}$.

Running time of Link: $O(1)$

Union(x, y): Link(Find(x), Find(y))

- Running time: $\text{depth}(x) + \text{depth}(y)$
Union example

If \(z \rightarrow \text{rank} \geq w \rightarrow \text{rank} \), then \((z \rightarrow \text{rank})++ \).
Union example

If $z \rightarrow \text{rank} \geq w \rightarrow \text{rank}$, then $(z \rightarrow \text{rank})++$.
Union example

If $z \rightarrow \text{rank} \geq w \rightarrow \text{rank}$, then $(z \rightarrow \text{rank})++
Union example

If $z \rightarrow \text{rank} \geq w \rightarrow \text{rank}$

If $z \rightarrow \text{rank} = w \rightarrow \text{rank}$, then $(z \rightarrow \text{rank})++$
Properties of Ranks

1. If \(x \) not a root, then \((x \rightarrow \text{rank}) < (x \rightarrow \text{parent} \rightarrow \text{rank})\)

2. When doing path compression, if parent of \(x \) changes, new parent has rank strictly larger than old parent

3. \(x \rightarrow \text{rank} \) can change only if \(x \) a root, and once \(x \) is a non-root it never becomes a root again.

Proof of Property 4.

Induction. Base case: \(r = 0 \). ✓

Inductive case: Suppose true for \(r - 1 \).

When \(x \) first gets rank \(r \), must be because \(x \) had rank \(r - 1 \) (and was root), unioned with another set with root \(z \) of rank \(r - 1 \).

\(\Rightarrow \) By induction, at least \(2^{r-1} \) nodes in each tree

\(\Rightarrow \) At least \(2^{r-1} + 2^{r-1} = 2^r \) nodes in combined tree.
Properties of Ranks

1. If \(x \) not a root, then \((x \rightarrow \text{rank}) < (x \rightarrow \text{parent} \rightarrow \text{rank}) \)

2. When doing path compression, if parent of \(x \) changes, new parent has rank strictly larger than old parent

3. \(x \rightarrow \text{rank} \) can change only if \(x \) a root, and once \(x \) is a non-root it never becomes a root again.

4. When \(x \) first reaches rank \(r \), there are at least \(2^r \) nodes in tree rooted at \(x \).
Properties of Ranks

1. If x not a root, then $(x \rightarrow \text{rank}) < (x \rightarrow \text{parent} \rightarrow \text{rank})$
2. When doing path compression, if parent of x changes, new parent has rank strictly larger than old parent
3. $x \rightarrow \text{rank}$ can change only if x a root, and once x is a non-root it never becomes a root again.
4. When x first reaches rank r, there are at least 2^r nodes in tree rooted at x.

Proof of Property 4.

Induction. Base case: $r = 0$.

\[\text{At least } 2^0 = 1 \text{ node in tree rooted at } x. \]
Properties of Ranks

1. If \(x \) not a root, then \((x \to \text{rank}) < (x \to \text{parent} \to \text{rank})\)

2. When doing path compression, if parent of \(x \) changes, new parent has rank strictly larger than old parent

3. \(x \to \text{rank} \) can change only if \(x \) a root, and once \(x \) is a non-root it never becomes a root again.

4. When \(x \) first reaches rank \(r \), there are at least \(2^r \) nodes in tree rooted at \(x \).

Proof of Property 4.

Induction. Base case: \(r = 0 \). ✓
Properties of Ranks

1. If x not a root, then $(x \rightarrow \text{rank}) < (x \rightarrow \text{parent} \rightarrow \text{rank})$

2. When doing path compression, if parent of x changes, new parent has rank strictly larger than old parent

3. $x \rightarrow \text{rank}$ can change only if x a root, and once x is a non-root it never becomes a root again.

4. When x first reaches rank r, there are at least 2^r nodes in tree rooted at x.

Proof of Property 4.

Induction. Base case: $r = 0$. ✓
Inductive case: Suppose true for $r - 1$. ➡️

By induction, at least 2^{r-1} nodes in each tree ➡️
At least $2^{r-1} + 2^{r-1} = 2^r$ nodes in combined tree.
Properties of Ranks

1. If x not a root, then $(x \rightarrow \text{rank}) < (x \rightarrow \text{parent} \rightarrow \text{rank})$

2. When doing path compression, if parent of x changes, new parent has rank strictly larger than old parent.

3. $x \rightarrow \text{rank}$ can change only if x a root, and once x is a non-root it never becomes a root again.

4. When x first reaches rank r, there are at least 2^r nodes in tree rooted at x.

Proof of Property 4.

Induction. Base case: $r = 0$. ✓

Inductive case: Suppose true for $r - 1$.

When x first gets rank r, must be because x had rank $r - 1$ (and was root), unioned with another set with root z of rank $r - 1$.

\Rightarrow By induction, at least 2^{r-1} nodes in each tree

\Rightarrow At least $2^{r-1} + 2^{r-1} = 2^r$ nodes in combined tree.
Properties of Ranks

1. If \(x \) not a root, then \((x \rightarrow \text{rank}) < (x \rightarrow \text{parent} \rightarrow \text{rank})\)
2. When doing path compression, if parent of \(x \) changes, new parent has rank strictly larger than old parent
3. \(x \rightarrow \text{rank} \) can change only if \(x \) a root, and once \(x \) is a non-root it never becomes a root again.
4. When \(x \) first reaches rank \(r \), there are at least \(2^r \) nodes in tree rooted at \(x \).

Proof of Property 4.

Induction. Base case: \(r = 0 \). \(\checkmark \)
Inductive case: Suppose true for \(r - 1 \).
When \(x \) first gets rank \(r \), must be because \(x \) had rank \(r - 1 \) (and was root), unioned with another set with root \(z \) of rank \(r - 1 \).
\(\implies \) By induction, at least \(2^{r-1} \) nodes in each tree
Properties of Ranks

1. If \(x \) not a root, then \((x \rightarrow \text{rank}) < (x \rightarrow \text{parent} \rightarrow \text{rank})\)

2. When doing path compression, if parent of \(x \) changes, new parent has rank strictly larger than old parent

3. \(x \rightarrow \text{rank} \) can change only if \(x \) a root, and once \(x \) is a non-root it never becomes a root again.

4. When \(x \) first reaches rank \(r \), there are at least \(2^r \) nodes in tree rooted at \(x \).

Proof of Property 4.

Induction. Base case: \(r = 0 \). ✓
Inductive case: Suppose true for \(r - 1 \).
When \(x \) first gets rank \(r \), must be because \(x \) had rank \(r - 1 \) (and was root), unioned with another set with root \(z \) of rank \(r - 1 \).

\(\implies \) By induction, at least \(2^{r-1} \) nodes in each tree

\(\implies \) At least \(2^{r-1} + 2^{r-1} = 2^r \) nodes in combined tree.
Nodes of rank r

Lemma

There are at most $n/2^r$ nodes of rank at least r.

Proof.

Let x node of rank at least r. Let S_x be descendants of x when it first got rank r.

$\implies |S_x| \geq 2^r$ by property 4.
Nodes of rank r

Lemma

*There are at most $n/2^r$ nodes of rank at least r.***

Proof.

Let x node of rank at least r. Let S_x be descendants of x when it first got rank r.

$\implies |S_x| \geq 2^r$ by property 4.

Let z some other node of rank $\geq r$. Without loss of generality, suppose x got rank r before z. Consider some $e \in S_x$. Then e can’t be in S_z (already in tree with rank $\geq r$). So $S_x \cap S_z = \emptyset$.
Nodes of rank r

Lemma

There are at most $n/2^r$ nodes of rank at least r.

Proof.

Let x node of rank at least r. Let S_x be descendants of x when it first got rank r.
\[\implies |S_x| \geq 2^r \text{ by property 4.} \]

Let z some other node of rank $\geq r$. Without loss of generality, suppose x got rank r before z. Consider some $e \in S_x$. Then e can’t be in S_z (already in tree with rank $\geq r$). So $S_x \cap S_z = \emptyset$.
\[\implies \text{At most } n/2^r \text{ nodes of rank } \geq r. \]
Main Result I

Theorem

When using Path Compression and Union By Rank, total time at most $O(m \log^* n)$.

Analyze each type separately:

- **Make-Set:** $O(1)$ time each
- **Union:** two Find operations, plus $O(1)$ other work.
- **Find(x):** proportional to depth of x. Count number of parent pointers followed, call this the time. So at most $2m$ Finds, want to bound total # parent pointers followed.
 - At most one parent pointer to root per Find \Rightarrow at most $O(m)$ parent pointers to roots.
 - So only need to worry about parent pointers to non-roots.
Main Result 1

Theorem

When using Path Compression and Union By Rank, total time at most $O(m \log^ n)$.***

m operations total. Analyze each type separately:

- **Make-Set:** $O(1)$ time each
- **Union:** two Find operations, plus $O(1)$ other work.
- **Find(x):** proportional to depth of x. Count number of parent pointers followed, call this the time.
Main Result I

Theorem

When using Path Compression and Union By Rank, total time at most $O(m \log^* n)$.

m operations total. Analyze each type separately:

- Make-Set: $O(1)$ time each
- Union: two Find operations, plus $O(1)$ other work.
- Find(x): proportional to depth of x. Count number of parent pointers followed, call this the time.

So at most $2m$ Finds, want to bound total # parent pointers followed.
Main Result I

Theorem

When using Path Compression and Union By Rank, total time at most $O(m \log^* n)$.

m operations total. Analyze each type separately:

- Make-Set: $O(1)$ time each
- Union: two Find operations, plus $O(1)$ other work.
- Find(x): proportional to depth of x. Count number of parent pointers followed, call this the time.

So at most $2m$ Finds, want to bound total # parent pointers followed.

- At most one parent pointer to root per Find \implies at most $O(m)$ parent pointers to roots.
- So only need to worry about parent pointers to non-roots.
Main Result II: Buckets

Put elements in buckets according to rank (only in analysis).

Notation: $2 \uparrow i$ denote a tower of i 2’s

- $2 \uparrow 1 = 2$, $2 \uparrow 2 = 2^2 = 4$, $2 \uparrow 3 = 2^{2^2} = 2^4 = 16$, $2 \uparrow 4 = 2^{2^{2^2}} = 2^{16} = 65536$
- $\log^* (2 \uparrow i) = i$
Main Result II: Buckets

Put elements in buckets according to rank (only in analysis).

Notation: $2 \uparrow i$ denote a tower of i 2’s

- $2 \uparrow 1 = 2$, $2 \uparrow 2 = 2^2 = 4$, $2 \uparrow 3 = 2^{2^2} = 2^4 = 16$, $2 \uparrow 4 = 2^{2^{2^2}} = 2^{16} = 65536$
- $\log^*(2 \uparrow i) = i$

Bucket i: All elements of rank at least $2 \uparrow (i - 1)$, at most $(2 \uparrow i) - 1$

- Bucket 0: nodes with rank 0
- Bucket 1: rank at least 1, at most 1
- Bucket 2: rank at least 2, at most 3
- Bucket 3: rank at least 4, at most 15
- Bucket 4: rank at least 16, at most 65535
Main Result II: Buckets

Put elements in buckets according to rank (only in analysis).

Notation: $2 \uparrow i$ denote a tower of i 2's

- $2 \uparrow 1 = 2$, $2 \uparrow 2 = 2^2 = 4$, $2 \uparrow 3 = 2^{2^2} = 2^4 = 16$, $2 \uparrow 4 = 2^{2^{2^2}} = 2^{16} = 65536$
- $\log^*(2 \uparrow i) = i$

Bucket i: All elements of rank at least $2 \uparrow (i - 1)$, at most $(2 \uparrow i) - 1$

- Bucket 0: nodes with rank 0
- Bucket 1: rank at least 1, at most 1
- Bucket 2: rank at least 2, at most 3
- Bucket 3: rank at least 4, at most 15
- Bucket 4: rank at least 16, at most 65535
- At most $\log^* n$ buckets.
Main Result II: Buckets

Put elements in buckets according to rank (only in analysis).

Notation: $2 \uparrow i$ denote a tower of i 2’s

- $2 \uparrow 1 = 2$,
 $2 \uparrow 2 = 2^2 = 4$,
 $2 \uparrow 3 = 2^{2^2} = 2^4 = 16$,
 $2 \uparrow 4 = 2^{2^{2^2}} = 2^{16} = 65536$
- $\log^* (2 \uparrow i) = i$

Bucket i: All elements of rank at least $2 \uparrow (i-1)$, at most $(2 \uparrow i) - 1$

- Bucket 0: nodes with rank 0
- Bucket 1: rank at least 1, at most 1
- Bucket 2: rank at least 2, at most 3
- Bucket 3: rank at least 4, at most 15
- Bucket 4: rank at least 16, at most 65535
- At most $\log^* n$ buckets.

From Lemma: at most $n/(2^{2\uparrow(i-1)}) = n/(2 \uparrow i)$ elements in bucket i.
Main Result III

Want to bound total # parent pointers (to non-roots) followed over all $\leq 2m$ Finds.
Main Result III

Want to bound total # parent pointers (to non-roots) followed over all $\leq 2m$ Finds.

Type 1: Parent pointers that cross buckets

- $\leq \log^* n$ buckets $\implies \leq \log^* n$ per Find $\implies \leq 2m \log^* n = O(m \log^* n)$ total
Main Result III

Want to bound total # parent pointers (to non-roots) followed over all $\leq 2m$ Finds.

Type 1: Parent pointers that cross buckets

$\leq \log^* n$ buckets $\implies \leq \log^* n$ per Find $\implies \leq 2m \log^* n = O(m \log^* n)$ total

Type 2: Parent pointers that do not cross buckets

- For each x, let $\alpha(x) = \#$ times follow parent point from x to parent in same bucket, not root. Want to show $\sum_x \alpha(x) \leq O(m \log^* n)$.
- Since x not root when following pointers, always has same rank
Main Result III

Want to bound total # parent pointers (to non-roots) followed over all \(\leq 2m \) Finds.

Type 1: Parent pointers that cross buckets

\[\leq \log^* n \text{ buckets} \implies \leq \log^* n \text{ per Find} \implies \leq 2m \log^* n = O(m \log^* n) \text{ total} \]

Type 2: Parent pointers that do not cross buckets

\[\text{For each } x, \text{ let } \alpha(x) = \# \text{ times follow parent point from } x \text{ to parent in same bucket, not root. Want to show } \sum_x \alpha(x) \leq O(m \log^* n). \]

\[\text{Since } x \text{ not root when following pointers, always has same rank} \]

\[\text{Whenever } x \text{'s pointer followed, gets new parent (path compression)} \]

\[\implies \text{rank of parent goes up by at least } 1 \text{ (properties of rank)} \]

\[\implies \text{happens at most } 2 \uparrow i \text{ times if } x \text{ in bucket } i \]

\[\implies \alpha(x) \leq 2 \uparrow i. \]
Main Result III

Want to bound total # parent pointers (to non-roots) followed over all \(\leq 2m \) Finds.

Type 1: Parent pointers that cross buckets
- \(\leq \log^* n \) buckets \(\implies \leq \log^* n \) per Find \(\implies \leq 2m \log^* n = O(m \log^* n) \) total

Type 2: Parent pointers that do not cross buckets
- For each \(x \), let \(\alpha(x) = \) # times follow parent point from \(x \) to parent in same bucket, not root. Want to show
 \[\sum_x \alpha(x) \leq O(m \log^* n). \]
- Since \(x \) not root when following pointers, always has same rank
- Whenever \(x \)'s pointer followed, gets new parent (path compression)
 \[\implies \text{rank of parent goes up by at least } 1 \] (properties of rank)
 \[\implies \text{happens at most } 2 \uparrow i \text{ times if } x \text{ in bucket } i \]
 \[\implies \alpha(x) \leq 2 \uparrow i. \]

\[
\sum_x \alpha(x) = \sum_{i=0}^{O(\log^* n)} \sum_{x \in B(i)} \alpha(x) \leq \sum_{i=0}^{O(\log^* n)} \sum_{x \in B(i)} (2 \uparrow i) \leq \sum_{i=0}^{O(\log^* n)} \frac{n}{2 \uparrow i} (2 \uparrow i) = O(n \log^* n)
\]

\[\leq O(m \log^* n), \]