Lecture 4: Linear Time Selection/Median

Michael Dinitz

September 10, 2020
601.433/633 Introduction to Algorithms
Announcements

- HW1 due now!
- HW2 due in 3 lectures: Tuesday 9/22
- Office hours basically set: see course webpage
 http://www.cs.jhu.edu/~mdimitz/classes/IntroAlgorithms/Fall2020/index.html
 (particularly embedded Google calendar)
Intro and Problem Definition

Last time: sorting in expected $O(n \log n)$ time (randomized quicksort)

- Should already know (from Data Structures) deterministic $O(n \log n)$ algorithms for sorting (mergesort, heapsort)

Today: two related problems

- Median: Given array A of length n, find the median: $(n/2)$nd smallest element.
- Selection: Given array A of length n and $k \in [1, n]$, find k’th smallest element.

Can solve both in $O(n \log n)$ time via sorting. Faster?
Warmup

$k = 1$:
Warmup

\[k = 1: \text{Scan through array, keeping track of smallest. } O(n) \text{ time.} \]
Warmup

\[k = 1: \text{Scan through array, keeping track of smallest. } O(n) \text{ time.} \]
\[k = n: \]

\[k = \Omega(1) \text{ or } k = n - \Omega(1) : \text{keep track of } k \text{ smallest/largest. } O(n) \text{ time.} \]

Does this work when \(k = n - 2 \)?

\[\text{Need to keep track of } k \geq 2 \text{ smallest.} \]
\[\text{When scanning, see an element, need to determine if one of } k \text{ smallest. If yes, remove previous max of the } k \geq 2 \text{ we've been keeping track of.} \]
\[\text{Not easy to do! Foreshadow: would need to use a heap.} \]
\[\text{\(T(n) = \Theta(n \log n) \text{-worst case time.} \) } \]
Warmup

\(k = 1\): Scan through array, keeping track of smallest. \(O(n)\) time.
\(k = n\): Scan through array, keeping track of largest. \(O(n)\) time.
Warmup

\[k = 1: \text{Scan through array, keeping track of smallest. } O(n) \text{ time.} \]
\[k = n: \text{Scan through array, keeping track of largest. } O(n) \text{ time.} \]
\[k = O(1) \text{ or } k = n - O(1): \]

[Diagram of an array with question marks]
Warmup

\(k = 1 \): Scan through array, keeping track of smallest. \(O(n) \) time.
\(k = n \): Scan through array, keeping track of largest. \(O(n) \) time.
\(k = O(1) \) or \(k = n - O(1) \): keep track of \(k \) smallest/largest. \(O(n) \) time.
Warmup

\(k = 1\): Scan through array, keeping track of smallest. \(O(n)\) time.
\(k = n\): Scan through array, keeping track of largest. \(O(n)\) time.
\(k = O(1)\) or \(k = n - O(1)\): keep track of \(k\) smallest/largest. \(O(n)\) time.

Does this work when \(k = n/2\)?
Warmup

\(k = 1 \): Scan through array, keeping track of smallest. \(O(n) \) time.

\(k = n \): Scan through array, keeping track of largest. \(O(n) \) time.

\(k = O(1) \) or \(k = n - O(1) \): keep track of \(k \) smallest/largest. \(O(n) \) time.

Does this work when \(k = n/2 \)?

- Need to keep track of \(k/2 \) smallest.
Warmup

\[k = 1: \] Scan through array, keeping track of smallest. \(\mathcal{O}(n) \) time.
\[k = n: \] Scan through array, keeping track of largest. \(\mathcal{O}(n) \) time.
\[k = \mathcal{O}(1) \text{ or } k = n - \mathcal{O}(1): \] keep track of \(k \) smallest/largest. \(\mathcal{O}(n) \) time.

Does this work when \(k = n/2 \)?

\[\rightarrow \text{Need to keep track of } \frac{k}{2} \text{ smallest.} \]
\[\rightarrow \text{When scanning, see an element, need to determine if one of } k \text{ smallest. If yes, remove previous max of the } \frac{k}{2} \text{ we’ve been keeping track of.} \]
\[\rightarrow \text{Not easy to do! Foreshadow: would need to use a heap. } \Theta(\log n) \text{-worst case time.} \]
Warmup

\(k = 1 \): Scan through array, keeping track of smallest. \(\mathcal{O}(n) \) time.
\(k = n \): Scan through array, keeping track of largest. \(\mathcal{O}(n) \) time.
\(k = \Theta(1) \) or \(k = n - \Theta(1) \): keep track of \(k \) smallest/largest. \(\mathcal{O}(n) \) time.

Does this work when \(k = n/2 \)?

- Need to keep track of \(k/2 \) smallest.
- When scanning, see an element, need to determine if one of \(k \) smallest. If yes, remove previous max of the \(k/2 \) we’ve been keeping track of.
 - Not easy to do! Foreshadow: would need to use a heap. \(\Theta(\log n) \)-worst case time.
 - \(\Theta(n \log n) \) worst-case time.
(Randomized) Quickselect

Main idea: (Randomized) Quicksort, but only recurse on side with element we’re looking for.

R-Quickselect(A, k):
1. If n = 1, return the element.
2. Pick a pivot element p uniformly at random from A.
3. Compare each element of A to p, creating subarrays L of elements less than p and G of elements greater than p.
4.1 If |L| = k - 1: return p.
4.2 If |L| > k - 1: return R-Quickselect(L, k).
4.3 If |L| < k - 1: return R-Quickselect(G, k - |L| - 1).
(Randomized) Quickselect

Main idea: (Randomized) Quicksort, but only recurse on side with element we’re looking for.

R-Quickselect(A, k):

1. If n = 1, return the element.
2. Pick a pivot element p uniformly at random from A.
3. Compare each element of A to p, creating subarrays L of elements less than p and G of elements greater than p.
4. 4.1 If |L| = k − 1:
(Randomized) Quickselect

Main idea: (Randomized) Quicksort, but only recurse on side with element we’re looking for.

R-Quickselect(A, k):

1. If \(n = 1 \), return the element.
2. Pick a pivot element \(p \) uniformly at random from \(A \).
3. Compare each element of \(A \) to \(p \), creating subarrays \(L \) of elements less than \(p \) and \(G \) of elements greater than \(p \).
4. 4.1 If \(|L| = k - 1 \): return \(p \).
(Randomized) Quickselect

Main idea: (Randomized) Quicksort, but only recurse on side with element we’re looking for.

R-Quickselect(A, k):

1. If $n = 1$, return the element.
2. Pick a pivot element p uniformly at random from A.
3. Compare each element of A to p, creating subarrays L of elements less than p and G of elements greater than p.
4. 4.1 If $\lvert L \rvert = k - 1$: return p.
 4.2 if $\lvert L \rvert > k - 1$:
(Randomized) Quickselect

Main idea: (Randomized) Quicksort, but only recurse on side with element we’re looking for.

R-Quickselect(A, k):

1. If \(n = 1 \), return the element.
2. Pick a pivot element \(p \) uniformly at random from \(A \).
3. Compare each element of \(A \) to \(p \), creating subarrays \(L \) of elements less than \(p \) and \(G \) of elements greater than \(p \).
4. 4.1 If \(|L| = k - 1 \): return \(p \).
 4.2 if \(|L| > k - 1 \): return R-Quickselect(L, k).
(Randomized) Quickselect

Main idea: (Randomized) Quicksort, but only recurse on side with element we’re looking for.

R-Quickselect(A, k):

1. If $n = 1$, return the element.
2. Pick a pivot element p uniformly at random from A.
3. Compare each element of A to p, creating subarrays L of elements less than p and G of elements greater than p.
4. 4.1 If $|L| = k - 1$: return p.
 4.2 if $|L| > k - 1$: return R-Quickselect(L, k).
 4.3 If $|L| < k - 1$:
(Randomized) Quickselect

Main idea: (Randomized) Quicksort, but only recurse on side with element we’re looking for.

R-Quickselect(A, k):

1. If $n = 1$, return the element.
2. Pick a pivot element p uniformly at random from A.
3. Compare each element of A to p, creating subarrays L of elements less than p and G of elements greater than p.
4. 4.1 If $|L| = k - 1$: return p.
 4.2 if $|L| > k - 1$: return R-Quickselect(L, k).
 4.3 If $|L| < k - 1$: return R-Quickselect($G, k - |L| - 1$).
Quickselect: Correctness

Sketch here: good exercise to do at home!
Quickselect: Correctness

Sketch here: good exercise to do at home!

Prove by induction ("loop invariant") that on any call to R-Quickselect(X, a), the element we’re looking for is a’th smallest of X.

- **Base case:** first call to R-Quickselect(A, k). Correct by definition.
- **Inductive case:** suppose was true for call R-Quickselect(Y, b).
 - If we return element: correct
 - If we recurse on L: correct
 - If we recurse on G: correct
Quickselect: Running Time

Intuition:

Random pivot should be "near middle", so splits array "approximately in half".

\[T(n) = T\left(\frac{n}{2}\right) + cn \]

Formalize this. Let \(T(n) \) be expected # comparisons on array of size \(n \).

Splitting around pivot:

\[n - 1 \] comparisons

Recurse on either \(L \) or \(G \)

\[\max(T(L), T(G)) = T(\max(L, G)) \]

\(L \), \(G \) distributed uniformly among \([0, n-1]\).

\[T(n) \leq (n-1) + \sum_{i=0}^{1} \frac{1}{n} T(\max(i, n-i-1)) \]

\[\leq (n-1) + \sum_{i=0}^{n-1} \frac{1}{2} T\left(\frac{n}{2}\right) \]

\[= (n-1) + \frac{1}{2} \cdot 2 \cdot T\left(\frac{n}{2}\right) \]

\[= (n-1) + \frac{1}{2} T(n) \]

\[\Rightarrow T(n) = 2(n-1) + \frac{1}{2} T(n) \]

\[\Rightarrow T(n) = \frac{4}{3} (n-1) \]

\[= \Theta(n) \]
Quickselect: Running Time

Intuition:

- Random pivot should be “near middle”, so splits array “approximately in half”.
- $O(\log n)$ recursive calls, but each one on an array of half the size

$\implies T(n) = T(n/2) + cn \implies O(n)$ time
Quickselect: Running Time

Intuition:
- Random pivot should be “near middle”, so splits array “approximately in half”.
- $O(\log n)$ recursive calls, but each one on an array of half the size

$\implies T(n) = T(n/2) + cn \implies O(n)$ time

Formalize this. Let $T(n)$ be expected # comparisons on array of size n.
Quickselect: Running Time

Intuition:
- Random pivot should be “near middle”, so splits array “approximately in half”.
- $O(\log n)$ recursive calls, but each one on an array of half the size
 $\implies T(n) = T(n/2) + cn \implies O(n)$ time

Formalize this. Let $T(n)$ be expected # comparisons on array of size n.
- Splitting around pivot: $n - 1$ comparisons
Quickselect: Running Time

Intuition:

- Random pivot should be “near middle”, so splits array “approximately in half”.
- $O(\log n)$ recursive calls, but each one on an array of half the size
 $\implies T(n) = T(n/2) + cn \implies O(n)$ time

Formalize this. Let $T(n)$ be expected # comparisons on array of size n.

- Splitting around pivot: $n - 1$ comparisons
- Recurse on either L or $G \implies$ recursion costs at most
 $\max(T(|L|), T(|G|)) = T(\max(|L|, |G|))$.
Quickselect: Running Time

Intuition:

- Random pivot should be “near middle”, so splits array “approximately in half”.
- \(O(\log n)\) recursive calls, but each one on an array of half the size
 \[\Longrightarrow T(n) = T(n/2) + cn \Longrightarrow O(n) \text{ time}\]

Formalize this. Let \(T(n)\) be expected \# comparisons on array of size \(n\).

- Splitting around pivot: \(n - 1\) comparisons
- Recurse on either \(L\) or \(G\) \(\Longrightarrow\) recursion costs at most
 \[\max(T(|L|), T(|G|)) = T(\max(|L|, |G|))\].
- \(|L|, |G|\) distributed uniformly among \([0, n - 1]\).
Quickselect: Running Time

Intuition:
- Random pivot should be “near middle”, so splits array “approximately in half”.
- \(O(\log n)\) recursive calls, but each one on an array of half the size
 \[T(n) = T(n/2) + cn \implies O(n)\] time

Formalize this. Let \(T(n)\) be expected # comparisons on array of size \(n\).
- Splitting around pivot: \(n - 1\) comparisons
- Recurse on either \(L\) or \(G\) \(\implies\) recursion costs at most
 \(\max(T(|L|), T(|G|)) = T(\max(|L|, |G|))\).
- \(|L|, |G|\) distributed uniformly among \([0, n - 1]\).
 \[T(n) \leq (n - 1) + \sum_{i=0}^{n-1} \frac{1}{n} T(\max(i, n - i - 1))\]

\[\leq (n - 1) + \sum_{i=0}^{n/2-1} \frac{1}{n} T(n - i - 1) + \sum_{i=n/2}^{n-1} \frac{1}{n} T(i) = (n - 1) + \sum_{i=n/2}^{n-1} \frac{1}{n} T(i)\]
Quickselect: Running Time II

Want to solve recurrence relation $T(n) \leq (n - 1) + \frac{2}{n} \sum_{i=n/2}^{n-1} T(i)$.

Guess and check: $T(n) \leq 4n$.
Quickselect: Running Time II

Want to solve recurrence relation

\[T(n) \leq (n - 1) + \frac{2}{n} \sum_{i=n/2}^{n-1} T(i) \]

Guess and check: \(T(n) \leq 4n \).

\[
\begin{align*}
T(n) &\leq (n - 1) + \frac{2}{n} \sum_{i=n/2}^{n-1} 4i \\
&= (n - 1) + 4 \cdot \frac{2}{n} \left(\sum_{i=1}^{n-1} i + \sum_{i=1}^{n/2-1} i \right) \\
&= (n - 1) + 4 \cdot \frac{2}{n} \left(\frac{n(n - 1)}{2} - \frac{(n/2)(n/2 - 1)}{2} \right) \\
&\leq (n - 1) + 4 \left((n - 1) - \frac{n/2 - 1}{2} \right) \\
&\leq (n - 1) + 4 \left(\frac{3n}{4} \right) \leq 4n.
\end{align*}
\]
Deterministic Version

Intuition:

- Randomization worked because it got us a “reasonably good” pivot.
- Simple deterministic pivot (first element, last element, etc.) bad because might not split array well.
- Deterministically find a pivot that’s “close” to the middle?
Deterministic Version

Intuition:
- Randomization worked because it got us a “reasonably good” pivot.
- Simple deterministic pivot (first element, last element, etc.) bad because might not split array well.
- Deterministically find a pivot that’s “close” to the middle?

Median-of-medians:
- Split A into $n/5$ groups of 5 elements each.
- Compute median of each group.
- Let p be the median of the $n/5$ medians
Deterministic Version

Intuition:
- Randomization worked because it got us a “reasonably good” pivot.
- Simple deterministic pivot (first element, last element, etc.) bad because might not split array well.
- Deterministically find a pivot that’s “close” to the middle?

Median-of-medians:
- Split \(\mathbf{A} \) into \(n/5 \) groups of 5 elements each.
- Compute median of each group.
- Let \(p \) be the median of the \(n/5 \) medians

Want to claim: \(p \) is a good pivot, and can find \(p \) efficiently.
Median-of-Medians is good pivot

Theorem

$|L|$ and $|G|$ are both at most $7n/10$ when p is median of medians.
Median-of-Medians is good pivot

Theorem

\(|L| \text{ and } |G| \text{ are both at most } \frac{7n}{10} \text{ when } p \text{ is median of medians.}\)

Let \(B\) be a group (of 5 elements), \(m\) median of \(B\):

\[
\begin{array}{cccc}
- & - & m & - \\
\end{array}
\]
Median-of-Medians is good pivot

Theorem

\(|L|\) and \(|G|\) are both at most \(7n/10\) when \(p\) is median of medians.

Let \(B\) be a group (of 5 elements), \(m\) median of \(B\):

- If \(m < p\): at least three elements of \(B\) (\(m\) and two smaller) are in \(L\)
Median-of-Medians is good pivot

Theorem

$|L|$ and $|G|$ are both at most $7n/10$ when p is median of medians.

Let B be a group (of 5 elements), m median of B:

- If $m < p$: at least three elements of B (m and two smaller) are in L
- If $m > p$: at least three elements of B (m and two larger) are in G
Median-of-Medians is good pivot

Theorem

|L| and |G| are both at most \(7n/10\) when \(p\) is median of medians.

Let \(B\) be a group (of 5 elements), \(m\) median of \(B\):

- If \(m < p\): at least three elements of \(B\) (\(m\) and two smaller) are in \(L\)
- If \(m > p\): at least three elements of \(B\) (\(m\) and two larger) are in \(G\)

By definition of \(p\), \(n/10\) groups have \(m < p\) and \(n/10\) have \(m > p\) (dot of mom)
Median-of-Medians is good pivot

Theorem

\[|L| \text{ and } |G| \text{ are both at most } \frac{7n}{10} \text{ when } p \text{ is median of medians.} \]

Let \(B \) be a group (of 5 elements), \(m \) median of \(B \):

\[
\begin{array}{cccc}
- & - & m & - & -
\end{array}
\]

- If \(m < p \): at least three elements of \(B \) (\(m \) and two smaller) are in \(L \)
- If \(m > p \): at least three elements of \(B \) (\(m \) and two larger) are in \(G \)

By definition of \(p \), \(\frac{n}{10} \) groups have \(m < p \) and \(\frac{n}{10} \) have \(m > p \)

\[
|L| \geq \frac{n}{10} \cdot 3 = \frac{3n}{10} \implies |G| \leq \frac{7n}{10}
\]
Median-of-Medians is good pivot

Theorem

\(|L| \text{ and } |G| \text{ are both at most } \frac{7n}{10} \text{ when } p \text{ is median of medians.}\\
\)

Let \(B\) be a group (of 5 elements), \(m\) median of \(B\):

- If \(m < p\): at least three elements of \(B\) (\(m\) and two smaller) are in \(L\)
- If \(m > p\): at least three elements of \(B\) (\(m\) and two larger) are in \(G\)

By definition of \(p\), \(n/10\) groups have \(m < p\) and \(n/10\) have \(m > p\)

\(|L| \geq \frac{n}{10} \cdot 3 = \frac{3n}{10} \implies |G| \leq \frac{7n}{10}\\
\)

\(|G| \geq \frac{n}{10} \cdot 3 = \frac{3n}{10} \implies |L| \leq \frac{7n}{10}\\
\)
Finding Median of Medians

Have $n/5$ elements (median of each group). Want to find median.

What problem is this?
Finding Median of Medians

Have \(n/5 \) elements (median of each group). Want to find median.

What problem is this? Median / Selection!
Finding Median of Medians

Have \(\frac{n}{5} \) elements (median of each group). Want to find median.

What problem is this? Median / Selection!

Recursion! Use same algorithm on array of medians.
Algorithm due to Blum-Pratt-Floyd-Rivest-Tarjan.

BPFRT

1. Group \(A \) into \(n \) groups of 5, and let \(A' \) be an array of size \(n \times 5 \) containing the median of each group.

2. Let \(p = BPFRT(A', n \times 5) \), i.e., recursively find the median \(p \) of \(A' \) (the median-of-the-medians).

3. Split \(A \) using \(p \) as a pivot into \(L \) and \(G \).

4. Recurse on the appropriate piece:
 4.1 if \(|L| = k - 1 \) then return \(p \).
 4.2 if \(|L| > k - 1 \) then return \(BPFRT(L, k) \).
 4.3 if \(|L| < k - 1 \) then return \(BPFRT(G, k - |L| - 1) \).
Algorithm due to Blum-Pratt-Floyd-Rivest-Tarjan.

\textbf{BPFRT}(A, k)
Algorithm due to Blum-Pratt-Floyd-Rivest-Tarjan.

BPFRT(A, k)

1. Group A into $n/5$ groups of 5, and let A' be an array of size $n/5$ containing the median of each group.

2. Let $p = \text{BPFRT}(A', n/10)$, i.e., recursively find the median p of A' (the median-of-the-medians).
Algorithm due to Blum-Pratt-Floyd-Rivest-Tarjan.

BPFRT(A, k)

1. Group A into $n/5$ groups of 5, and let A' be an array of size $n/5$ containing the median of each group.

2. Let $p = \text{BPFRT}(A', n/10)$, i.e., recursively find the median p of A' (the median-of-the-medians).

4. Recurse on the appropriate piece:

 4.1 if $|L| = k - 1$ then return p.

 4.2 if $|L| > k - 1$ then return $\text{BPFRT}(L, k)$.

 4.3 if $|L| < k - 1$ then return $\text{BPFRT}(G, k - |L| - 1)$.
BPFRT Analysis

Let $T(n)$ be (worst-case) running time on A of size n.

- Step 1: $O(n)$ time
- Step 2: $T(n/5)$ time
- Step 3: $O(n)$ time
- Step 4: $T(7n/10)$ time
BPFRT Analysis

Let $T(n)$ be (worst-case) running time on A of size n.

- Step 1: $O(n)$ time
- Step 2: $T(n/5)$ time
- Step 3: $O(n)$ time
- Step 4: $T(7n/10)$ time

$$T(n) \leq T(7n/10) + T(n/5) + cn$$

$T(n) = \Theta(n \log n)$
BPFRT Analysis

Let $T(n)$ be (worst-case) running time on A of size n.

- Step 1: $O(n)$ time
- Step 2: $T(n/5)$ time
- Step 3: $O(n)$ time
- Step 4: $T(7n/10)$ time

$$T(n) \leq T(7n/10) + T(n/5) + cn$$

Guess $T(n) \leq 10cn$:

$$T(n) \leq 10c(7n/10) + 10c(n/5) + cn = 9cn + cn = 10cn$$
Deterministic $O(n \log n)$ Quicksort

Can use this to get deterministic $O(n \log n)$-time Quicksort!
Deterministic $O(n \log n)$ Quicksort

Can use this to get *deterministic* $O(n \log n)$-time Quicksort!
Use BPFRT($A, n/2$) to choose median as pivot.
Deterministic $O(n \log n)$ Quicksort

Can use this to get *deterministic* $O(n \log n)$-time Quicksort! Use BPFRT($A, n/2$) to choose median as pivot.

Let $T(n)$ be time on input of size n.
- BPFRT to find pivot takes $O(n)$ time
- Splitting around pivot takes $O(n)$ time
- Each recursive call takes $T(n/2)$ time
Deterministic $O(n \log n)$ Quicksort

Can use this to get *deterministic* $O(n \log n)$-time Quicksort!
Use BPFRT($A, n/2$) to choose median as pivot.

Let $T(n)$ be time on input of size n.
- BPFRT to find pivot takes $O(n)$ time
- Splitting around pivot takes $O(n)$ time
- Each recursive call takes $T(n/2)$ time

\[
T(n) = 2T(n/2) + cn \quad \Rightarrow \quad T(n) = \Theta(n \log n)
\]