Lecture 3: Probabilistic Analysis, Randomized Quicksort

Michael Dinitz

September 8, 2020
601.433/633 Introduction to Algorithms
Introduction: Sorting

- Sorting: given array of comparable elements, put them in sorted order
- Popular topic to cover in Algorithms courses
- This course:
 - I assume you know the basics (mergesort, quicksort, insertion sort, selection sort, bubble sort, etc.) from Data Structures
 - Today: more advanced sorting (randomized quicksort)
 - Next week: Sorting lower bound and ways around it.
First lecture: “Average-case” problematic.
- What is the “average case”?
- Want to design algorithms that work in all applications.
Randomized Algorithms and Probabilistic Analysis

First lecture: “Average-case” problematic.
- What is the “average case”?
- Want to design algorithms that work in *all* applications.

Instead of assuming random distribution over inputs (average-case analysis, machine learning), add randomization *inside* algorithm!
- Still assume worst-case inputs, give bound on worst-case *expected* running time.
Randomized Algorithms and Probabilistic Analysis

First lecture: “Average-case” problematic.
 ▶ What is the “average case”?
 ▶ Want to design algorithms that work in all applications.

Instead of assuming random distribution over inputs (average-case analysis, machine learning), add randomization inside algorithm!
 ▶ Still assume worst-case inputs, give bound on worst-case expected running time.

Fall semesters: 601.434/634 Randomized and Big Data Algorithms. Great class!
Randomized Algorithms and Probabilistic Analysis

First lecture: “Average-case” problematic.
 ▶ What is the “average case”?
 ▶ Want to design algorithms that work in all applications.

Instead of assuming random distribution over inputs (average-case analysis, machine learning), add randomization inside algorithm!
 ▶ Still assume worst-case inputs, give bound on worst-case expected running time.

Fall semesters: 601.434/634 Randomized and Big Data Algorithms. Great class!

Today: adding randomness into quicksort.
Quicksort Basics (Review)

Input: array A of length n.

Algorithm:
1. If $n = 0$ or 1, return A (already sorted)
2. Pick some element p as the pivot
3. Compare every element of A to p. Let L be the elements less than p, let G be the elements larger than p. Create array $[L, p, G]$
4. Recursively sort L and G.
QuickSort Basics (Review)

Input: array A of length n.

Algorithm:
1. If $n = 0$ or 1, return A (already sorted)
2. Pick some element p as the pivot
3. Compare every element of A to p. Let L be the elements less than p, let G be the elements larger than p. Create array $[L, p, G]$
4. Recursively sort L and G.

Not fully specified: how to choose p?
- Traditionally: some simple deterministic choice (first element, last element, etc.)
- Next lecture: better deterministic choice (not very practical)
- Now: first element
Quicksort Analysis

Upper bound:
If \(p \) picked as pivot in step 2, then in correct place after step 3.
Quicksort Analysis

Upper bound:
If \(p \) picked as pivot in step 2, then in correct place after step 3
\[\rightarrow \text{ step 2 and 3 executed at most } n \text{ times.} \]
Quicksort Analysis

Upper bound:
If p picked as pivot in step 2, then in correct place after step 3
implies step 2 and 3 executed at most n times.

Step 3 takes time \(O(n) \) (compare all to pivot)
Quicksort Analysis

Upper bound:
If p picked as pivot in step 2, then in correct place after step 3

⇒ step 2 and 3 executed at most n times.

Step 3 takes time $O(n)$

⇒ total time at most $O(n^2)$
QuickSort Analysis

Upper bound:
If p picked as pivot in step 2, then in correct place after step 3
\implies step 2 and 3 executed at most n times.

Step 3 takes time $O(n)$
\implies total time at most $O(n^2)$

Lower Bound:
Suppose A already sorted.
Quicksort Analysis

Upper bound:
If p picked as pivot in step 2, then in correct place after step 3
\implies step 2 and 3 executed at most n times.

Step 3 takes time $O(n)$
\implies total time at most $O(n^2)$

Lower Bound:
Suppose A already sorted.
$\implies p = A[0]$ is smallest element
Quicksort Analysis

Upper bound:
If \(p \) picked as pivot in step 2, then in correct place after step 3
\[\implies \text{step 2 and 3 executed at most } n \text{ times.} \]

Step 3 takes time \(O(n) \)
\[\implies \text{total time at most } O(n^2) \]

Lower Bound:
Suppose \(A \) already sorted.
\[\implies p = A[0] \text{ is smallest element} \implies L = \emptyset \text{ and } G = A[1..n-1] \]
QuickSort Analysis

Upper bound:
If p picked as pivot in step 2, then in correct place after step 3
\[\implies\] step 2 and 3 executed at most \(n\) times.

Step 3 takes time \(O(n)\)
\[\implies\] total time at most \(O(n^2)\)

Lower Bound:
Suppose \(A\) already sorted.
\[\implies\] \(p = A[0]\) is smallest element \[\implies\] \(L = \emptyset\) and \(G = A[1..n-1]\)
\[\implies\] in one call to quicksort, do \(\Omega(n)\) work to compare everything to \(p\), then recurse on array of size \(n-1\)
Quicksort Analysis

Upper bound:
If p picked as pivot in step 2, then in correct place after step 3
\implies step 2 and 3 executed at most n times.

Step 3 takes time $O(n)$
\implies total time at most $O(n^2)$

Lower Bound:
Suppose A already sorted.
$\implies p = A[0]$ is smallest element $\implies L = \emptyset$ and $G = A[1..n-1]$
\implies in one call to quicksort, do $\Omega(n)$ work to compare everything to p, then recurse on array of size $n-1$
\implies running time is $T(n) = T(n-1) + cn$
Quicksort Analysis

Upper bound:
If p picked as pivot in step 2, then in correct place after step 3
\implies step 2 and 3 executed at most n times.

Step 3 takes time $O(n)$
\implies total time at most $O(n^2)$

Lower Bound:
Suppose A already sorted.
\implies $p = A[0]$ is smallest element $\implies L = \emptyset$ and $G = A[1..n-1]$
\implies in one call to quicksort, do $\Omega(n)$ work to compare everything to p, then recurse on array of size $n-1$
\implies running time is $T(n) = T(n-1) + cn \implies T(n) = \Theta(n^2)$
Randomized Quicksort

Randomized Quicksort: pick \(p \) uniformly at random from \(A \).

Today: prove that expected running time at most \(O(n \log n) \) for every input \(A \).
Randomized Quicksort

Randomized Quicksort: pick \(p \) uniformly at random from \(A \).

Today: prove that expected running time at most \(\mathcal{O}(n \log n) \) for every input \(A \).

- Better than an average-case bound: holds for every single input!
- Maybe in one application inputs tend to be pretty well-sorted: original deterministic quicksort bad, this still good!
Randomized Quicksort

Randomized Quicksort: pick \(p \) uniformly at random from \(A \).

Today: prove that expected running time at most \(\mathcal{O}(n \log n) \) for every input \(A \).

- Better than an average-case bound: holds for every single input!
- Maybe in one application inputs tend to be pretty well-sorted: original deterministic quicksort bad, this still good!
- Today only expectation. Can be more clever to get high probability bounds.
Randomized Quicksort

Randomized Quicksort: pick p uniformly at random from A.

Today: prove that expected running time at most $O(n \log n)$ for every input A.

- Better than an average-case bound: holds for every single input!
- Maybe in one application inputs tend to be pretty well-sorted: original deterministic quicksort bad, this still good!
- Today only expectation. Can be more clever to get high probability bounds.

Before doing analysis, quick review of basic probability theory.
Probability Basics I

Only semi-formal here. Look at CLRS Chapter 5, take Introduction to Probability
Probability Basics I

Only semi-formal here. Look at CLRS Chapter 5, take Introduction to Probability

Ω: Sample space. Set of all possible outcomes.
Probability Basics I

Only semi-formal here. Look at CLRS Chapter 5, take Introduction to Probability

Ω: Sample space. Set of all possible outcomes.
 - Roll two dice. Ω =
Probability Basics I

Only semi-formal here. Look at CLRS Chapter 5, take Introduction to Probability

\(\Omega\): Sample space. Set of all possible outcomes.

- Roll two dice. \(\Omega = \{1, 2, \ldots, 6\} \times \{1, 2, \ldots, 6\}\).
Probability Basics I

Only semi-formal here. Look at CLRS Chapter 5, take Introduction to Probability

\(\Omega \): Sample space. Set of all possible outcomes.
- Roll two dice. \(\Omega = \{1, 2, \ldots, 6\} \times \{1, 2, \ldots, 6\}. \) Not \(\{2, 3, \ldots, 12\} \)
Probability Basics I

Only semi-formal here. Look at CLRS Chapter 5, take Introduction to Probability

\(\Omega \): Sample space. Set of all possible outcomes.

- Roll two dice. \(\Omega = \{1, 2, \ldots, 6\} \times \{1, 2, \ldots, 6\} \). Not \(\{2, 3, \ldots, 12\} \)

Event: subset of \(\Omega \)
Probability Basics I

Only semi-formal here. Look at CLRS Chapter 5, take Introduction to Probability

\(\Omega \): Sample space. Set of all possible outcomes.

- Roll two dice. \(\Omega = \{1, 2, \ldots, 6\} \times \{1, 2, \ldots, 6\} \). Not \(\{2, 3, \ldots, 12\} \)

Event: subset of \(\Omega \)

- “Event that first die is 3”: \(\{(3, x) : x \in \{1, 2, \ldots, 6\}\} \)
- “Event that dice add up to 7 or 11”: \(\{(x, y) \in \Omega : (x + y = 7) \text{ or } (x + y = 11)\} \)
Probability Basics I

Only semi-formal here. Look at CLRS Chapter 5, take Introduction to Probability

\(\Omega \): Sample space. Set of all possible outcomes.

- Roll two dice. \(\Omega = \{1, 2, \ldots, 6\} \times \{1, 2, \ldots, 6\} \). \(\text{Not} \ \{2, 3, \ldots, 12\} \)

Event: subset of \(\Omega \)

- “Event that first die is 3”: \(\{(3, x) : x \in \{1, 2, \ldots, 6\}\} \)
- “Event that dice add up to 7 or 11”: \(\{(x, y) \in \Omega : (x + y = 7) \text{ or } (x + y = 11)\} \)

Random Variable: \(X : \Omega \to \mathbb{R} \)

- \(X_1 \): value of first die. \(X_1(x, y) = x \)
- \(X_2 \): value of second die. \(X_2(x, y) = y \)
- \(X = X_1 + X_2 \): sum of the dice. \(X(x, y) = x + y = X_1(x, y) + X_2(x, y) \)
Probability Basics I

Only semi-formal here. Look at CLRS Chapter 5, take Introduction to Probability

\(\Omega \): Sample space. Set of all possible outcomes.

- Roll two dice. \(\Omega = \{1, 2, \ldots, 6\} \times \{1, 2, \ldots, 6\} \). Not \(\{2, 3, \ldots, 12\} \)

Event: subset of \(\Omega \)

- "Event that first die is 3": \(\{ (3, x) : x \in \{1, 2, \ldots, 6\} \} \)
- "Event that dice add up to 7 or 11": \(\{ (x, y) \in \Omega : (x + y = 7) \text{ or } (x + y = 11) \} \)

Random Variable: \(X : \Omega \rightarrow \mathbb{R} \)

- \(X_1 \): value of first die. \(X_1(x, y) = x \)
- \(X_2 \): value of second die. \(X_2(x, y) = y \)
- \(X = X_1 + X_2 \): sum of the dice. \(X(x, y) = x + y = X_1(x, y) + X_2(x, y) \)

Random variables super important! Running time of randomized quicksort is a random variable.
Probability Basics II

Want to define probabilities. Should use measure theory. Won’t.
Want to define probabilities. Should use measure theory. Won’t.

For each $e \in \Omega$ let $\Pr[e]$ be probability of e (probability distribution)

- $\Pr[e] \geq 0$ for all $e \in \Omega$, and $\sum_{e \in \Omega} \Pr[e] = 1$
- Probability of an event A is $\Pr[A] = \sum_{e \in A} \Pr[e]$
Want to define probabilities. Should use measure theory. Won’t.

For each $e \in \Omega$ let $\Pr[e]$ be probability of e (probability distribution)

- $\Pr[e] \geq 0$ for all $e \in \Omega$, and $\sum_{e \in \Omega} \Pr[e] = 1$
- Probability of an event A is $\Pr[A] = \sum_{e \in A} \Pr[e]$

Conditional probability: if A and B are events:

$$Pr[B|A] = \frac{Pr[A \cap B]}{Pr[A]} = \frac{\sum_{e \in A \cap B} Pr[e]}{\sum_{e \in A} Pr[e]}$$
Probability Basics III: Expectations

Expectation of a random variable:

\[E[X] = \sum_{e \in \Omega} X(e) \Pr[e] \]

“Average” of the random variable according to probability distribution
Probability Basics III: Expectations

Expectation of a random variable:

\[E[X] = \sum_{e \in \Omega} X(e)Pr[e] \]

“Average” of the random variable according to probability distribution

Can be useful to rearrange terms to get different equation:

\[E[X] = \sum_{e \in \Omega} X(e)Pr[e] = \sum_{y \in \mathbb{R}} \sum_{e \in \Omega : X(e) = y} y \cdot Pr[e] = \sum_{y \in \mathbb{R}} y \cdot Pr[X = y] \]
Probability Basics III: Expectations

Expectation of a random variable:

$$E[X] = \sum_{e \in \Omega} X(e)Pr[e]$$

“Average” of the random variable according to probability distribution

Can be useful to rearrange terms to get different equation:

$$E[X] = \sum_{e \in \Omega} X(e)Pr[e] = \sum_{y \in \mathbb{R}} \sum_{e \in \Omega : X(e)=y} y \cdot Pr[e] = \sum_{y \in \mathbb{R}} y \cdot Pr[X = y]$$

Conditional Expectation: \(A \) an event, \(X \) a random variable.

$$E[X|A] = \frac{1}{Pr[A]} \sum_{e \in A} X(e)Pr[e]$$
Linearity of Expectations

Amazing feature of expectations: linearity!

Theorem

For any two random variables X and Y, and any constants α and β:

$$E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$$
Linearity of Expectations

Amazing feature of expectations: linearity!

Theorem

For any two random variables X and Y, and any constants α and β:

$$E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$$

Consider rolling two dice. Let X be sum. What is $E[X]$?

- $E[X] = \sum_{e \in \Omega} X(e) \Pr[e]$. 36 term sum!
- $E[X] = \sum_{y \in \mathbb{R}} y \cdot \Pr[X = y]$. What is $\Pr[X = 2]$, $\Pr[X = 3]$, ...?
Linearity of Expectations

Amazing feature of expectations: linearity!

Theorem

For any two random variables X and Y, and any constants α and β:

$E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$

Consider rolling two dice. Let X be sum. What is $E[X]$?

- $E[X] = \sum_{e \in \Omega} X(e) \Pr[e]$. 36 term sum!
- $E[X] = \sum_{y \in \mathbb{R}} y \cdot \Pr[X = y]$. What is $\Pr[X = 2]$, $\Pr[X = 3]$, ...?

Instead: $X = X_1 + X_2$. So $E[X] = E[X_1 + X_2] = E[X_1] + E[X_2]$
Linearity of Expectations

Amazing feature of expectations: linearity!

Theorem

For any two random variables X and Y, and any constants α and β:

$$E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$$

Consider rolling two dice. Let X be sum. What is $E[X]$?

- $E[X] = \sum_{e \in \Omega} X(e) \Pr[e]$. 36 term sum!
- $E[X] = \sum_{y \in \mathbb{R}} y \cdot \Pr[X = y]$. What is $\Pr[X = 2]$, $\Pr[X = 3]$, ...?

Instead: $X = X_1 + X_2$. So $E[X] = E[X_1 + X_2] = E[X_1] + E[X_2]$

$$E[X_1] = E[X_2] = \sum_{y=1}^{6} \frac{1}{6}y = \frac{21}{6} = 3.5$$
Linearity of Expectations

Amazing feature of expectations: linearity!

Theorem

For any two random variables X and Y, and any constants α and β:

$$E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$$

Consider rolling two dice. Let X be sum. What is $E[X]$?

- $E[X] = \sum_{e \in \Omega} X(e) Pr[e]$. 36 term sum!
- $E[X] = \sum_{y \in \mathbb{R}} y \cdot Pr[X = y]$. What is $Pr[X = 2]$, $Pr[X = 3]$, ... ?

Instead: $X = X_1 + X_2$. So $E[X] = E[X_1 + X_2] = E[X_1] + E[X_2]$

$$E[X_1] = E[X_2] = \sum_{y=1}^{6} \frac{1}{6}y = \frac{21}{6} = 3.5$$

$$\implies E[X] = 3.5 + 3.5 = 7$$
Linearity of Expectations: Proof

Theorem

For any two random variables X and Y, and any constants α and β:

$$E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$$

Proof.

$$E[\alpha X + \beta Y] = \sum_{e \in \Omega} \Pr[e] (\alpha X(e) + \beta Y(e))$$

Holds no matter how correlated X and Y are!
Theorem

For any two random variables X and Y, and any constants α and β:

$$E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$$

Proof.

$$E[\alpha X + \beta Y] = \sum_{e \in \Omega} Pr[e] (\alpha X(e) + \beta Y(e))$$

$$= \alpha \sum_{e \in \Omega} Pr[e] X(e) + \beta \sum_{e \in \Omega} Pr[e] X(e)$$

Holds no matter how correlated X and Y are!
Linearity of Expectations: Proof

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
</table>
| For any two random variables X and Y, and any constants α and β:
$E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$ |

<table>
<thead>
<tr>
<th>Proof.</th>
</tr>
</thead>
</table>
| $E[\alpha X + \beta Y] = \sum_{e \in \Omega} \Pr[e] \left(\alpha X(e) + \beta Y(e) \right)$
$= \alpha \sum_{e \in \Omega} \Pr[e]X(e) + \beta \sum_{e \in \Omega} \Pr[e]X(e)$
$\text{Holds no matter how correlated } X \text{ and } Y \text{ are!}$ |

<table>
<thead>
<tr>
<th>Proof.</th>
</tr>
</thead>
</table>
| $E[\alpha X + \beta Y] = \sum_{e \in \Omega} \Pr[e] \left(\alpha X(e) + \beta Y(e) \right)$
$= \alpha \sum_{e \in \Omega} \Pr[e]X(e) + \beta \sum_{e \in \Omega} \Pr[e]X(e)$
$\text{Holds no matter how correlated } X \text{ and } Y \text{ are!}$ |
Linearity of Expectations: Proof

Theorem

For any two random variables X and Y, and any constants α and β:

$$E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$$

Proof.

$$E[\alpha X + \beta Y] = \sum_{e \in \Omega} \Pr[e] (\alpha X(e) + \beta Y(e))$$

$$= \alpha \sum_{e \in \Omega} \Pr[e] X(e) + \beta \sum_{e \in \Omega} \Pr[e] X(e)$$

$$= \alpha E[X] + \beta E[Y]$$

Holds no matter how correlated X and Y are!
Randomized Quicksort I

Theorem

The expected running time of randomized quicksort is at most $O(n \log n)$.
Theorem

The expected running time of randomized quicksort is at most $O(n \log n)$.

Assume for simplicity all elements distinct. Running time $= \Theta(\# \text{ of comparisons})$
Randomized Quicksort I

Theorem

The expected running time of randomized quicksort is at most $O(n \log n)$.

Assume for simplicity all elements distinct. Running time $= \Theta(\# \text{ of comparisons})$

Definitions:

- $X = \# \text{ of comparisons (random variable)}$
- $e_i = i$’th smallest element (for $i \in \{1, \ldots, n\}$)
- X_{ij} random variable for all $i, j \in \{1, \ldots, n\}$ with $i < j$:

$$X_{ij} = \begin{cases} 1 & \text{if algorithm compares } e_i \text{ and } e_j \text{ at any point in time} \\ 0 & \text{otherwise} \end{cases}$$
Randomized Quicksort II

Algorithm never compares the same two elements more than once

$$X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}$$

$$\forall e \in \mathbb{R}, \ X(e) = \sum_{i,j} X_{ij}: (e)$$
Randomized Quicksort II

Algorithm never compares the same two elements more than once

\[X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \]

\[E[X] = E \left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}] \]

So just need to understand \(E[X_{ij}] \)

Simple cases:

1. \(j = i+1 \): \(X_{ij} = 1 \) no matter what, so \(E[X_{ij}] = 1 \)
2. \(i = 1, j = n \): \(e_1 \) and \(e_n \) compared if and only if first pivot chosen is \(e_1 \) or \(e_n \)

So really expectation of \(X_{1n} \)
Randomized Quicksort II

Algorithm never compares the same two elements more than once

\[X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \]

\[
E[X] = E \left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}]
\]

So just need to understand \(E[X_{ij}] \)
Algorithm never compares the same two elements more than once

\[X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \]

\[
E[X] = E \left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}]
\]

So just need to understand \(E[X_{ij}] \)

Simple cases:
Randomized Quicksort II

Algorithm never compares the same two elements more than once

\[X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \]

\[E[X] = E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}] \]

So just need to understand \(E[X_{ij}] \)

Simple cases:

- \(j = i + 1 \):

\[E[X_{ij}] = 1 \cdot P(X_{ij} = 1) \]
Randomized Quicksort II

Algorithm never compares the same two elements more than once

\[X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \]

\[E[X] = E \left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}] \]

So just need to understand \(E[X_{ij}] \)

Simple cases:

- \(j = i + 1 \): \(X_{ij} = 1 \) no matter what, so \(E[X_{ij}] = 1 \)
Randomized Quicksort II

Algorithm never compares the same two elements more than once

\[X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \]

\[
E[X] = E \left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}]
\]

So just need to understand \(E[X_{ij}] \)

Simple cases:
- \(j = i + 1 \): \(X_{ij} = 1 \) no matter what, so \(E[X_{ij}] = 1 \)
- \(i = 1, j = n \):
Randomized Quicksort II

Algorithm never compares the same two elements more than once

\[X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \]

\[
E[X] = E \left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}]
\]

So just need to understand \(E[X_{ij}] \)

Simple cases:

- \(j = i + 1 \): \(X_{ij} = 1 \) no matter what, so \(E[X_{ij}] = 1 \)
- \(i = 1, j = n \): \(e_1 \) and \(e_n \) compared if and only if first pivot chosen is \(e_1 \) or \(e_n \)
 \[\implies E[X_{1n}] = \frac{2}{n} \]
$E[X_{ij}]$: General Case ($i < j$)

If $p = e_i$ or $p = e_j$:

If $e_i < p < e_j$:

If $p < e_i$ or $p > e_j$:

Condition on $e_i \leq p \leq e_j$:

Condition on $p \in [e_i, e_j]$:

So X_{ij} not determined until $e_i \leq p \leq e_j$, and when this is determined has $E[X_{ij}] = 2j - i + 1$.

$\Rightarrow E[X_{ij}] = 2j - i + 1$
E[X_{ij}]: General Case (i < j)

If \(p = e_i \) or \(p = e_j \): \(X_{ij} = 1 \)
E[X_{ij}]: General Case (i < j)

- If $p = e_i$ or $p = e_j$: $X_{ij} = 1$
- If $e_i < p < e_j$:
\[E[X_{ij}] : \text{General Case (} i < j \text{)} \]

If \(p = e_i \) or \(p = e_j \): \(X_{ij} = 1 \)

If \(e_i < p < e_j \): \(X_{ij} = 0 \)
$E[X_{ij}]$: General Case ($i < j$)

If $p = e_i$ or $p = e_j$: $X_{ij} = 1$

If $e_i < p < e_j$: $X_{ij} = 0$

If $p < e_i$ or $p > e_j$:

Condition on $e_i \leq p \leq e_j$:

$E[X_{ij}] = 2j - i + 1$

Condition on $p \in [e_i, e_j]$:

still undetermined

So X_{ij} not determined until $e_i \leq p \leq e_j$, and then determined as $E[X_{ij}] = 2j - i + 1$
$E[X_{ij}]$: General Case ($i < j$)

If $p = e_i$ or $p = e_j$: $X_{ij} = 1$

If $e_i < p < e_j$: $X_{ij} = 0$

If $p < e_i$ or $p > e_j$: Both e_i, e_j in same recursive call.
$E[X_{ij}]$: General Case ($i < j$)

If $p = e_i$ or $p = e_j$: $X_{ij} = 1$

If $e_i < p < e_j$: $X_{ij} = 0$

If $p < e_i$ or $p > e_j$: ? Both e_i, e_j in same recursive call.

- Condition on $e_i \leq p \leq e_j$:
\[E[X_{ij}] \]: General Case \((i < j)\)

1. If \(p = e_i \) or \(p = e_j\): \(X_{ij} = 1\)
2. If \(e_i < p < e_j\): \(X_{ij} = 0\)
3. If \(p < e_i \) or \(p > e_j\): ? Both \(e_i\), \(e_j\) in same recursive call.
 - Condition on \(e_i \leq p \leq e_j\): \(E[X_{ij} \mid e_i \leq p \leq e_j] = \frac{2}{j-i+1}\)
\(\mathbb{E}[X_{ij}] \): General Case (\(i < j \))

- If \(p = e_i \) or \(p = e_j \): \(X_{ij} = 1 \)
- If \(e_i < p < e_j \): \(X_{ij} = 0 \)
- If \(p < e_i \) or \(p > e_j \): ? Both \(e_i, e_j \) in same recursive call.
 - Condition on \(e_i \leq p \leq e_j \): \(\mathbb{E}[X_{ij} \mid e_i \leq p \leq e_j] = \frac{2}{j-i+1} \)
 - Condition on \(p \notin [e_i, e_j] \):
E[X_{ij}]: General Case (i < j)

If \(p = e_i \) or \(p = e_j \): \(X_{ij} = 1 \)

If \(e_i < p < e_j \): \(X_{ij} = 0 \)

If \(p < e_i \) or \(p > e_j \): ? Both \(e_i, e_j \) in same recursive call.

- Condition on \(e_i \leq p \leq e_j \): \(E[X_{ij} \mid e_i \leq p \leq e_j] = \frac{2}{j-i+1} \)
- Condition on \(p \notin [e_i, e_j] \): still undetermined

\[
\frac{2}{j-i+1} \cdot \mathbb{P}(x \leq \frac{5-\frac{1}{n}}{n}) \leq c_i \leq \sqrt{\frac{5-\frac{1}{n}}{n}}
\]
E[X_{ij}]: General Case (i < j)

If \(p = e_i \) or \(p = e_j \): \(X_{ij} = 1 \)

If \(e_i < p < e_j \): \(X_{ij} = 0 \)

If \(p < e_i \) or \(p > e_j \): ? Both \(e_i, e_j \) in same recursive call.

- Condition on \(e_i \leq p \leq e_j \): \(E[X_{ij} \mid e_i \leq p \leq e_j] = \frac{2}{j-i+1} \)
- Condition on \(p \notin [e_i, e_j] \): still undetermined

So \(X_{ij} \) not determined until \(e_i \leq p \leq e_j \), and when it is determined has \(E[X_{ij}] = \frac{2}{j-i+1} \)

\[\implies E[X_{ij}] = \frac{2}{j-i+1}\]
$E[X_{ij}]$: General Case (formally)

Let Y_k be event that the k'th pivot is in $[e_i, e_j]$ and all previous pivots not in $[e_i, e_j]$
$E[X_{ij}]$: General Case (formally)

Let Y_k be event that the k’th pivot is in $[e_i, e_j]$ and all previous pivots not in $[e_i, e_j]$.

\implies by definition, the Y_k events are disjoint and partition sample space.

$E[X_{ij}] = \sum_{k=1}^{n} E[X_{ij} | Y_k] \Pr[Y_k]$.

Since the Y_k events are disjoint and partition the sample space, we have:

$E[X_{ij}] = \sum_{k=1}^{n} \frac{2j-i+1}{n} = \frac{2j-i+1}{2}$.
E[X_{ij}]: General Case (formally)

Let Y_k be event that the k'th pivot is in $[e_i, e_j]$ and all previous pivots not in $[e_i, e_j]$.

\implies by definition, the Y_k events are disjoint and partition sample space.

Showed that $E[X_{ij}|Y_k] = \frac{2}{j-i+1}$ for all k.
E[X_{ij}]: General Case (formally)

Let Y_k be event that the k^{th} pivot is in $[e_i, e_j]$ and all previous pivots not in $[e_i, e_j]$
\[\implies \text{by definition, the Y_k events are disjoint and partition sample space} \]

Showed that $E[X_{ij}|Y_k] = \frac{2}{j-i+1}$ for all k.

\[
E[X_{ij}] = \sum_{k=1}^{n} E[X_{ij}|Y_k] \Pr[Y_k] \\
= \frac{2}{j-i+1} \sum_{k=1}^{n} \Pr[Y_k] \\
= \frac{2}{j-i+1} \\
\]

(Y_k disjoint and partition Ω)
Expected running time of randomized quicksort:

\[
E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}]
\]
(linearity of expectations)

\[
= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j - i + 1}
\]

\[
= 2 \sum_{i=1}^{n-1} \left(\frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n - i + 1} \right)
\]

\[
\leq 2 \sum_{i=1}^{n-1} H_n
\]

\[
\leq 2nH_n
\]

\[
\leq O(n \log n)
\]