Lecture 2: Asymptotic Analysis, Recurrences

Michael Dinitz

September 3, 2020
601.433/633 Introduction to Algorithms
Today

Should be review, some might be new.
See math background in CLRS

Asymptotics: $O(\cdot)$, $\Omega(\cdot)$, and $\Theta(\cdot)$ notation.
 - Should know from Data Structures. We’ll be a bit more formal.
 - Intuitively: hide constants and lower order terms, since we only care what happen “at scale” (asymptotically)

Recurrences: How to solve recurrence relations.
 - Should know from Discrete Math.
Asymptotic Notation
Definition

$g(n) \in O(f(n))$ if there exist constants $c, n_0 > 0$ such that $g(n) \leq c \cdot f(n)$ for all $n > n_0$.

Examples:

$2n^2 + 27 = O(n^2)$: set $n_0 = 6$ and $c = 3$.

$2n^2 + 27 = O(n^3)$: same values, or $n_0 = 4$ and $c = 1$.

$\sum_{i=1}^{n} i = O(n^2)$.

About functions, not algorithms! Expresses an upper bound.
Definition

\[g(n) \in O(f(n)) \] if there exist constants \(c, n_0 > 0 \) such that \(g(n) \leq c \cdot f(n) \) for all \(n > n_0 \).

Technically \(O(f(n)) \) is a set.

Abuse notation: “\(g(n) \) is \(O(f(n)) \)” or \(g(n) = O(f(n)) \).
Definition

\(g(n) \in O(f(n)) \) if there exist constants \(c, n_0 > 0 \) such that \(g(n) \leq c \cdot f(n) \) for all \(n > n_0 \).

Technically \(O(f(n)) \) is a set.

Abuse notation: “\(g(n) \) is \(O(f(n)) \)” or \(g(n) = O(f(n)) \).

Examples:

- \(2n^2 + 27 = O(n^2) \): set \(n_0 = 6 \) and \(c = 3 \)
- \(2n^2 + 27 = O(n^3) \): same values, or \(n_0 = 4 \) and \(c = 1 \)
- \(n^3 + 2000n^2 + 2000n = O(n^3) \): set \(n_0 = 10000 \) and \(c = 2 \)
Definition

\[g(n) \in O(f(n)) \] if there exist constants \(c, n_0 > 0 \) such that \(g(n) \leq c \cdot f(n) \) for all \(n > n_0 \).

Technically \(O(f(n)) \) is a set.

Abuse notation: “\(g(n) \) is \(O(f(n)) \)” or \(g(n) = O(f(n)) \).

Examples:

- \(2n^2 + 27 = O(n^2) \): set \(n_0 = 6 \) and \(c = 3 \)
- \(2n^2 + 27 = O(n^3) \): same values, or \(n_0 = 4 \) and \(c = 1 \)
- \(n^3 + 2000n^2 + 2000n = O(n^3) \): set \(n_0 = 10000 \) and \(c = 2 \)

About *functions* not algorithms!

Expresses an *upper* bound
Example

Definition

\[g(n) \in O(f(n)) \text{ if there exist constants } c, n_0 > 0 \text{ such that } g(n) \leq c \cdot f(n) \text{ for all } n > n_0. \]

Theorem

\[2n^2 + 27 = O(n^2) \]
Example

Definition

\(g(n) \in O(f(n)) \) if there exist constants \(c, n_0 > 0 \) such that \(g(n) \leq c \cdot f(n) \) for all \(n > n_0 \).

Theorem

\[2n^2 + 27 = O(n^2) \]

Proof.

Set \(c = 3 \). Suppose \(2n^2 + 27 > cn^2 = 3n^2 \)
Example

Definition

\[g(n) \in O(f(n)) \] if there exist constants \(c, n_0 > 0 \) such that \(g(n) \leq c \cdot f(n) \) for all \(n > n_0 \).

Theorem

\[2n^2 + 27 = O(n^2) \]

Proof.

Set \(c = 3 \). Suppose \(2n^2 + 27 > cn^2 = 3n^2 \)

\[\implies n^2 < 27 \]
Example

Definition

\(g(n) \in O(f(n)) \) if there exist constants \(c, n_0 > 0 \) such that \(g(n) \leq c \cdot f(n) \) for all \(n > n_0 \).

Theorem

\(2n^2 + 27 = O(n^2) \)

Proof.

Set \(c = 3 \). Suppose \(2n^2 + 27 > cn^2 = 3n^2 \)

\[\implies n^2 < 27 \implies n < 6 \]

Many other ways to prove this!
Example

Definition

\(g(n) \in O(f(n)) \) if there exist constants \(c, n_0 > 0 \) such that \(g(n) \leq c \cdot f(n) \) for all \(n > n_0 \).

Theorem

\(2n^2 + 27 = O(n^2) \)

Proof.

Set \(c = 3 \). Suppose \(2n^2 + 27 > cn^2 = 3n^2 \)

\[\implies n^2 < 27 \implies n < 6 \]

\[\implies 2n^2 + 27 \leq 3n^2 \text{ for all } n \geq 6. \]
Example

Definition

\[g(n) \in O(f(n)) \text{ if there exist constants } c, n_0 > 0 \text{ such that } g(n) \leq c \cdot f(n) \text{ for all } n > n_0. \]

Theorem

\[2n^2 + 27 = O(n^2) \]

Proof.

Set \(c = 3 \). Suppose \(2n^2 + 27 > cn^2 = 3n^2 \)

\[\implies n^2 < 27 \implies n < 6 \]

\[\implies 2n^2 + 27 \leq 3n^2 \text{ for all } n \geq 6. \]

Set \(n_0 = 6 \). Then \(2n^2 + 27 \leq cn^2 \text{ for all } n > n_0. \)
Example

Definition

\[g(n) \in O(f(n)) \text{ if there exist constants } c, n_0 > 0 \text{ such that } g(n) \leq c \cdot f(n) \text{ for all } n > n_0. \]

Theorem

\[2n^2 + 27 = O(n^2) \]

Proof.

Set \(c = 3 \). Suppose \(2n^2 + 27 > cn^2 = 3n^2 \)

\[\implies n^2 < 27 \implies n < 6 \]

\[\implies 2n^2 + 27 \leq 3n^2 \text{ for all } n \geq 6. \]

Set \(n_0 = 6 \). Then \(2n^2 + 27 \leq cn^2 \text{ for all } n > n_0. \)

Many other ways to prove this!
Counterpart to $O(\cdot)$: lower bound rather than upper bound.

Definition

$g(n) \in \Omega(f(n))$ if there exist constants $c, n_0 > 0$ such that $g(n) \geq c \cdot f(n)$ for all $n > n_0$.

![Graph of function relationships](image)
Counterpart to $O(\cdot)$: lower bound rather than upper bound.

Definition

$g(n) \in \Omega(f(n))$ if there exist constants $c, n_0 > 0$ such that $g(n) \geq c \cdot f(n)$ for all $n > n_0$.

Examples:

- $2n^2 + 27 = \Omega(n^2)$: set $n_0 = 1$ and $c = 1$
- $2n^2 + 27 = \Omega(n)$: set $n_0 = 1$ and $c = 1$
- $\frac{1}{100}n^3 - 1000n^2 = \Omega(n^3)$: set $n_0 = 1000000$ and $c = 1/1000$
Θ(·)

Combination of \(O(\cdot) \) and \(\Omega(\cdot) \).

Definition

\(g(n) \in \Theta(f(n)) \) if \(g(n) \in O(f(n)) \) and \(g(n) \in \Omega(f(n)) \).

Note: constants \(n_0, c \) can be different in the proofs for \(O(f(n)) \) and \(\Omega(f(n)) \).
Combination of $O(\cdot)$ and $\Omega(\cdot)$.

Definition

$g(n) \in \Theta(f(n))$ if $g(n) \in O(f(n))$ and $g(n) \in \Omega(f(n))$.

Note: constants n_0, c can be different in the proofs for $O(f(n))$ and $\Omega(f(n))$.

Equivalent:

Definition

$g(n) \in \Theta(f(n))$ if there are constants $c_1, c_2, n_0 > 0$ such that $c_1 f(n) \leq g(n) \leq c_2 f(n)$ for all $n > n_0$.

Both lower bound and upper bound, so asymptotic equality.
Little notation

Strict versions of O and Ω:

Definition

$g(n) \in o(f(n))$ if for every constant $c > 0$ there exists a constant $n_0 > 0$ such that $g(n) < c \cdot f(n)$ for all $n > n_0$.

Definition

$g(n) \in \omega(f(n))$ if for every constant $c > 0$ there exists a constant $n_0 > 0$ such that $g(n) > c \cdot f(n)$ for all $n > n_0$.

Examples:

- $2n^2 + 27 = o(n^2 \log n)$
- $2n^2 + 27 = \omega(n)$
Recurrence Relations
Sorting

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).
Sorting

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting:
 ▶ Selection Sort
Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting:
- Selection Sort
 - Find smallest unsorted element, put it just after sorted elements. Repeat.
Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting:

- **Selection Sort**
 - Find smallest unsorted element, put it just after sorted elements. Repeat.
 - Running time: Takes $O(n)$ time to find smallest unsorted element, decreases remaining unsorted by 1.

 \[T(n) = T(n - 1) + cn \]
Sorting

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting:

- Selection Sort
 - Find smallest unsorted element, put it just after sorted elements. Repeat.
 - Running time: Takes $O(n)$ time to find smallest unsorted element, decreases remaining unsorted by 1.
 \[T(n) = T(n-1) + cn \]

- Mergesort
Sorting

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting:

- **Selection Sort**
 - Find smallest unsorted element, put it just after sorted elements. Repeat.
 - Running time: Takes $O(n)$ time to find smallest unsorted element, decreases remaining unsorted by 1.
 \[T(n) = T(n-1) + cn \]

- **Mergesort**
 - Split array into left and right halves. Recursively sort each half, then merge.

Sorting

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting:

- **Selection Sort**
 - Find smallest unsorted element, put it just after sorted elements. Repeat.
 - Running time: Takes $O(n)$ time to find smallest unsorted element, decreases remaining unsorted by 1.
 \[T(n) = T(n - 1) + cn \]

- **Mergesort**
 - Split array into left and right halves. Recursively sort each half, then merge.
 - Running time: Merging takes $O(n)$ time. Two recursive calls on half the size.
 \[T(n) = 2T(n/2) + cn \]
Sorting

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting:
- Selection Sort
 - Find smallest unsorted element, put it just after sorted elements. Repeat.
 - Running time: Takes $O(n)$ time to find smallest unsorted element, decreases remaining unsorted by 1.
 $\implies T(n) = T(n-1) + cn$
- Mergesort
 - Split array into left and right halves. Recursively sort each half, then merge.
 - Running time: Merging takes $O(n)$ time. Two recursive calls on half the size.
 $\implies T(n) = 2T(n/2) + cn$

Also need base case. For algorithms, constant size input takes constant time.
$\implies T(n) \leq c$ for all $n \leq n_0$, for some constants $n_0, c > 0$.
Guess and Check

\[T(n) = 3T(n/3) + n \quad \text{for} \quad n \geq 1 \]

\[T(1) = 1 \]
Guess and Check

\[T(n) = 3T(n/3) + n \quad \text{and} \quad T(1) = 1 \]

Guess: \(T(n) \leq cn. \)
Guess and Check

\[T(n) = 3T(n/3) + n \quad \text{T}(1) = 1 \]

Guess: \(T(n) \leq cn \).

Check: assume true for \(n' < n \), prove true for \(n \) (induction).
Guess and Check

\[T(n) = 3T\left(\frac{n}{3}\right) + n \quad T(1) = 1 \]

Guess: \(T(n) \leq cn \).

Check: assume true for \(n' < n \), prove true for \(n \) (induction).

\[
T(n) = 3T\left(\frac{n}{3}\right) + n \leq 3cn/3 + n = (c + 1)n
\]

Failure! Wanted \(T(n) \leq cn \), got \(T(n) \leq (c + 1)n \). Guess was wrong.

Better guess? What goes up by 1 when \(n \) goes up by a factor of 3?

\[
\log_3 n
\]

Guess: \(T(n) \leq n \log_3 (3n) \).

Check: assume true for \(n' < n \), prove true for \(n \) (induction).

\[
T(n) = 3T\left(\frac{n}{3}\right) + n \leq 3n \log_3 \left(\frac{n}{3}\right) + n = n \left(\log_3 (3n) + \log_3 3 \right) = n \log_3 (3n)
\]
Guess and Check

\[T(n) = 3T(n/3) + n \quad \text{T(1) = 1} \]

Guess: \(T(n) \leq cn \).

Check: assume true for \(n' < n \), prove true for \(n \) (induction).

\[T(n) = 3T(n/3) + n \leq 3cn/3 + n = (c + 1)n \]

Failure! Wanted \(T(n) \leq cn \), got \(T(n) \leq (c + 1)n \). Guess was wrong.
Guess and Check

\[T(n) = 3T(n/3) + n \quad \text{T}(1) = 1 \]

Guess: \(T(n) \leq cn. \)

Check: assume true for \(n' < n \), prove true for \(n \) (induction).

\[T(n) = 3T(n/3) + n \leq 3cn/3 + n = (c + 1)n \]

Failure! Wanted \(T(n) \leq cn \), got \(T(n) \leq (c + 1)n \). Guess was wrong.

Better guess? What goes up by 1 when \(n \) goes up by a factor of 3?
Guess and Check

\[T(n) = 3T(n/3) + n \quad \text{T(1) = 1} \]

Guess: \(T(n) \leq cn \).

Check: assume true for \(n' < n \), prove true for \(n \) (induction).

\[T(n) = 3T(n/3) + n \leq 3cn/3 + n = (c + 1)n \]

Failure! Wanted \(T(n) \leq cn \), got \(T(n) \leq (c + 1)n \). Guess was wrong.

Better guess? What goes up by 1 when \(n \) goes up by a factor of 3? \(\log_3 n \)
Guess and Check

\[T(n) = 3T(n/3) + n \quad \text{T(1) = 1} \]

Guess: \(T(n) \leq cn \).

Check: assume true for \(n' < n \), prove true for \(n \) (induction).
\[T(n) = 3T(n/3) + n \leq 3cn/3 + n = (c + 1)n \]
Failure! Wanted \(T(n) \leq cn \), got \(T(n) \leq (c + 1)n \). Guess was wrong.

Better guess? What goes up by 1 when \(n \) goes up by a factor of 3? \(\log_3 n \)
Guess: \(T(n) \leq n \log_3(3n) \)

Check: assume true for \(n' < n \), prove true for \(n \) (induction).
\[T(n) = 3T(n/3) + n \leq 3(n/3) \log_3(n) + n = n \log_3(n) + n \]
\[= n(\log_3(n) + \log_3 3) = n \log_3(3n). \]
Unrolling

Example: selection sort. \(T(n) = T(n - 1) + cn \)

Idea: “unroll” the recurrence.
Unrolling

Example: selection sort. \(T(n) = T(n - 1) + cn \)
Idea: “unroll” the recurrence.

\[
T(n) = cn + T(n - 1)
\]
Unrolling

Example: selection sort. \(T(n) = T(n - 1) + cn \)
Idea: “unroll” the recurrence.

\[
T(n) = cn + T(n - 1)
\]

\[
T(n) = cn + c(n - 1) + T(n - 2)
\]
Unrolling

Example: selection sort. \(T(n) = T(n - 1) + cn \)
Idea: “unroll” the recurrence.

\[
T(n) = cn + T(n - 1)
\]
\[
= cn + c(n - 1) + T(n - 2)
\]
\[
= cn + c(n - 1) + c(n - 2) + T(n - 3)
\]
\[
\vdots
\]
\[
= cn + c(n - 1) + c(n - 2) + \cdots + cn \text{ terms, each of which at most } cn
\]
\[
\Rightarrow T(n) \leq cn^2 = O(n^2)
\]

At least \(n^2 \) terms which are at least \(n^2 \)
\[
\Rightarrow T(n) \geq c n^2 - \mathcal{O}(n^4) = \mathcal{O}(n^4)
\]
\[
\Rightarrow T(n) = \mathcal{O}(n^2)
\]
Unrolling

Example: selection sort. \(T(n) = T(n - 1) + cn \)

Idea: “unroll” the recurrence.

\[
T(n) = cn + T(n - 1)
\]
\[
= cn + c(n - 1) + T(n - 2)
\]
\[
= cn + c(n - 1) + c(n - 2) + T(n - 3)
\]
\[
\vdots
\]

At least \(n^2 \) terms which are at least \(n^2 \) \(\implies T(n) \geq c n^2/4 = \Theta(n^2) \)

\(\implies T(n) = \Theta(n^2) \).
Unrolling

Example: selection sort. $T(n) = T(n-1) + cn$

Idea: “unroll” the recurrence.

\[
T(n) = cn + T(n-1) \\
= cn + c(n-1) + T(n-2) \\
= cn + c(n-1) + c(n-2) + T(n-3) \\
\vdots \\
= cn + c(n-1) + c(n-2) + \cdots + c
\]
Unrolling

Example: selection sort. \(T(n) = T(n - 1) + cn \)

Idea: “unroll” the recurrence.

\[
T(n) = cn + T(n - 1)
= cn + c(n - 1) + T(n - 2)
= cn + c(n - 1) + c(n - 2) + T(n - 3)
\vdots
= cn + c(n - 1) + c(n - 2) + \cdots + c
\]

\(n \) terms, each of which at most \(cn \) \(\implies T(n) \leq cn^2 = O(n^2) \)
Unrolling

Example: selection sort. \(T(n) = T(n - 1) + cn \)

Idea: “unroll” the recurrence.

\[
T(n) = cn + T(n - 1) \\
= cn + c(n - 1) + T(n - 2) \\
= cn + c(n - 1) + c(n - 2) + T(n - 3) \\
\vdots \\
= cn + c(n - 1) + c(n - 2) + \cdots + c
\]

\(n \) terms, each of which at most \(cn \) \(\implies \) \(T(n) \leq cn^2 = O(n^2) \)

At least \(n/2 \) terms which are at least \(\frac{cn}{2} \) \(\implies \) \(T(n) \geq c\frac{n^2}{4} = \Omega(n^2) \)
Unrolling

Example: selection sort. $T(n) = T(n - 1) + cn$

Idea: “unroll” the recurrence.

\[
T(n) = cn + T(n - 1)
= cn + c(n - 1) + T(n - 2)
= cn + c(n - 1) + c(n - 2) + T(n - 3)
\vdots
= cn + c(n - 1) + c(n - 2) + \cdots + c
\]

n terms, each of which at most cn \implies $T(n) \leq cn^2 = O(n^2)$

At least $n/2$ terms which are at least $n/2$ \implies $T(n) \geq c\frac{n^2}{4} = \Omega(n^2)$

\implies $T(n) = \Theta(n^2)$.
Recursion Tree: Mergesort

Generalizes unrolling: draw out full tree of “recursive calls”.

Mergesort: $T(n) = 2T(n/2) + cn$.
Recursion Tree: Mergesort

Generalizes unrolling: draw out full tree of “recursive calls”.
Mergesort: \(T(n) = 2T(n/2) + cn. \)
Recursion Tree: Mergesort

Generalizes unrolling: draw out full tree of “recursive calls”.
Mergesort: $T(n) = 2T(n/2) + cn$.

levels:
Recursion Tree: Mergesort

Generalizes unrolling: draw out full tree of “recursive calls”.
Mergesort: \(T(n) = 2T(n/2) + cn \).

\[
\begin{align*}
\text{Contribution of level } i & : 2^i - 1 \cdot cn \\
\text{Total} & : \sum_{i=0}^{\log_2 n} (2^i - 1) \cdot cn = \Theta(n \log n)
\end{align*}
\]

levels: \(\log_2 n \)
Recursion Tree: Mergesort

Generalizes unrolling: draw out full tree of “recursive calls”.

Mergesort: \(T(n) = 2T(n/2) + cn \).

Levels: \(\log_2 n \)

Contribution of level \(i \):
Recursion Tree: Mergesort

Generalizes unrolling: draw out full tree of “recursive calls”.
Mergesort: \(T(n) = 2T(n/2) + cn. \)

\[
\begin{align*}
\text{cn} & \\
\text{cn/2} & \\
\text{cn/2} & \\
\text{cn/4} & | & \text{cn/4} & | & \text{cn/4} & | & \text{cn/4} \\
\text{cn/8} & | & \text{cn/8} \\
& & & & & & & & & & & \vdots \\
\end{align*}
\]

levels: \(\log_2 n \)
Contribution of level \(i \): \(2^{i-1} \frac{cn}{2^{i-1}} = cn \)
Recursion Tree: Mergesort

Generalizes unrolling: draw out full tree of “recursive calls”.

Mergesort: \(T(n) = 2T(n/2) + cn. \)

\[
\begin{align*}
\text{cn} \\
\text{cn/2} & \quad \text{cn/2} \\
\text{cn/4} & \quad \text{cn/4} & \quad \text{cn/4} & \quad \text{cn/4} \\
| & \quad | & \quad | & \quad |
\text{cn/8} & \quad \text{cn/8} & \quad \text{cn/8} & \quad \text{cn/8} \\
\vdots & \quad \vdots & \quad \vdots & \quad \vdots
\end{align*}
\]

\# levels: \(\log_2 n \)

Contribution of level \(i \): \(2^{i-1} \cdot \text{cn}/2^{i-1} = \text{cn} \)

\(\implies T(n) = \Theta(n \log n) \)
Recursion Tree: Strassen

\[T(n) = 7T(n/2) + cn^2 \]
Recursion Tree: Strassen

\[T(n) = 7T(n/2) + cn^2 \]

\[\text{Level } i: \quad 7^{i-1} cn^2 \left(\frac{n}{2} \right)^{i-1} \]

Total:

\[T(n) = \sum_{i=1}^{\log n} 7^{i-1} cn^2 \left(\frac{n}{2} \right)^{i-1} = O(n^2 \log n) = O(n^2 \log \frac{4}{3}) = O(n^2 \log 7) \]
Recursion Tree: Strassen

\[T(n) = 7T(n/2) + cn^2 \]

Level \(i \) :
\[7^{i-1}c(n/2^{i-1})^2 = (7/4)^{i-1}cn^2 \]
Recursion Tree: Strassen

\[T(n) = 7T\left(\frac{n}{2}\right) + cn^2 \]

Level \(i \):
\[7^{i-1}c\left(\frac{n}{2^{i-1}}\right)^2 = (7/4)^{i-1}cn^2 \]
\[
T(n) = \sum_{i=1}^{\log n + 1} \left(\frac{7}{4} \right)^{i-1} cn^2 = cn^2 \sum_{i=1}^{\log n + 1} \left(\frac{7}{4} \right)^{i-1}
\]
Total:
\[T(n) = O\left(n\log\left(\frac{7}{4}\right)\right) = O\left(n\log n\right) \]
Recursion Tree: Strassen

\[T(n) = 7T(n/2) + cn^2 \]

Level \(i\): \(7^{i-1}c(n/2^{i-1})^2 = (7/4)^{i-1}cn^2\)

\[
T(n) = \sum_{i=1}^{\log n + 1} \left(\frac{7}{4}\right)^{i-1} cn^2 = cn^2 \sum_{i=1}^{\log n + 1} \left(\frac{7}{4}\right)^{i-1}
\]

Total:

\[
\longrightarrow T(n) = O(n^2 (7/4)^{\log n}) = O(n^2 n^{\log(7/4)}) = O(n^2 n^{\log 7 - 2}) = O(n^{\log 7})
\]
Master Theorem

\[T(n) = aT\left(\frac{n}{b}\right) + cn^k \quad T(1) = c \]

\(a, b, c, k \) constants with \(a \geq 1, b > 1, c > 0, \) and \(k \geq 0 \)
Master Theorem

\[T(n) = aT(n/b) + cn^k \quad T(1) = c \]

\(a, b, c, k \) constants with \(a \geq 1, b > 1, c > 0, \) and \(k \geq 0 \)
Master Theorem

\[T(n) = aT(n/b) + cn^k \quad \text{and} \quad T(1) = c \]

\(a, b, c, k\) constants with \(a \geq 1, b > 1, c > 0\), and \(k \geq 0\)

\# levels: \(\log_b n + 1\)
Master Theorem

\[T(n) = aT(n/b) + cn^k \quad \text{T(1) = c} \]

\(a, b, c, k \) constants with \(a \geq 1, b > 1, c > 0, \) and \(k \geq 0 \)

\[\# \text{ levels: } \log_b n + 1 \]

Level \(i: \ a^{i-1}c(n/b^{i-1})^k = cn^k(a/b^k)^{i-1} \]
Master Theorem II

Let $\alpha = \frac{a}{b^k}$

$\implies T(n) = cn^k \sum_{i=1}^{\log_b n + 1} (\alpha/b^k)^i = cn^k \sum_{i=1}^{\log_b n + 1} \alpha^i$
Master Theorem II

Let $\alpha = \left(\frac{a}{b^k}\right)$

$\implies T(n) = cn^k \sum_{i=1}^{\log_b n+1} (a/b^k)^{i-1} = cn^k \sum_{i=1}^{\log_b n+1} \alpha^{i-1}$

- Case 1: $\alpha = 1$. All levels the same. $T(n) = cn^k \sum_{i=1}^{\log_b n+1} 1 = \Theta(n^k \log n)$
Master Theorem II

Let $\alpha = (a/b^k)$

$\implies T(n) = cn^k \sum_{i=1}^{\log_b n + 1} (a/b^k)^i - 1 = cn^k \sum_{i=1}^{\log_b n + 1} \alpha^{i-1}$

- Case 1: $\alpha = 1$. All levels the same. $T(n) = cn^k \sum_{i=1}^{\log_b n + 1} 1 = \Theta(n^k \log n)$
- Case 2: $\alpha < 1$. Dominated by top level.
Master Theorem II

Let $\alpha = (a/b^k)$

$$T(n) = cn^k \sum_{i=1}^{\log_b n+1} (a/b^k)^{i-1} = cn^k \sum_{i=1}^{\log_b n+1} \alpha^{i-1}$$

- Case 1: $\alpha = 1$. All levels the same. $T(n) = cn^k \sum_{i=1}^{\log_b n+1} 1 = \Theta(n^k \log n)$
- Case 2: $\alpha < 1$. Dominated by top level.
 $$\sum_{i=1}^{\log_b n+1} \alpha^{i-1} \leq \sum_{i=1}^{\infty} \alpha^{i-1} = \frac{1}{1-\alpha}.$$
 $$\implies T(n) = O(n^k)$$
Master Theorem II

Let \(\alpha = (a/b^k) \)

\[T(n) = cn^k \sum_{i=1}^{\log_b n + 1} (a/b^k)^{i-1} = cn^k \sum_{i=1}^{\log_b n + 1} \alpha^{i-1} \]

- Case 1: \(\alpha = 1 \). All levels the same. \(T(n) = cn^k \sum_{i=1}^{\log_b n + 1} 1 = \Theta(n^k \log n) \)
- Case 2: \(\alpha < 1 \). Dominated by top level.
 \[\sum_{i=1}^{\log_b n + 1} \alpha^{i-1} \leq \sum_{i=1}^{\infty} \alpha^{i-1} = \frac{1}{1-\alpha}. \]
 \[T(n) = O(n^k) \]
 \[T(n) \geq cn^k \implies T(n) = \Omega(n^k) \]
Master Theorem II

Let $\alpha = (a/b^k)$

$$\Rightarrow T(n) = cn^k \sum_{i=1}^{\log_b n + 1} (a/b^k)^{i-1} = cn^k \sum_{i=1}^{\log_b n + 1} \alpha^{i-1}$$

- Case 1: $\alpha = 1$. All levels the same. $T(n) = cn^k \sum_{i=1}^{\log_b n + 1} 1 = \Theta(n^k \log n)$
- Case 2: $\alpha < 1$. Dominated by top level.
 $$\Rightarrow \sum_{i=1}^{\log_b n + 1} \alpha^{i-1} \leq \sum_{i=1}^{\infty} \alpha^{i-1} = \frac{1}{1-\alpha}.$$
 $$\Rightarrow T(n) = O(n^k)$$

- Case 3: $\alpha > 1$. Dominated by bottom level
 $$\Rightarrow \log_b n + 1 \leq \log_b n \log_b n + 1 \leq \sum_{i=1}^{\infty} \alpha^{i-1} \leq \frac{1}{1-\alpha}.$$
 $$\Rightarrow T(n) = \Omega(n^k) \Rightarrow T(n) = \Theta(n^k)$$
Master Theorem II

Let \(\alpha = (a/b^k) \)

\[T(n) = cn^k \sum_{i=1}^{\log_b n + 1} (a/b^k)^{i-1} = cn^k \sum_{i=1}^{\log_b n + 1} \alpha^{i-1} \]

- Case 1: \(\alpha = 1 \). All levels the same. \(T(n) = cn^k \sum_{i=1}^{\log_b n + 1} 1 = \Theta(n^k \log n) \)
- Case 2: \(\alpha < 1 \). Dominated by top level.
 \[\sum_{i=1}^{\log_b n + 1} \alpha^{i-1} \leq \sum_{i=1}^{\infty} \alpha^{i-1} = \frac{1}{1-\alpha}. \]
 \[T(n) = O(n^k) \]
 \[T(n) \geq cn^k \implies T(n) = \Omega(n^k) \implies T(n) = \Theta(n^k) \]
- Case 3: \(\alpha > 1 \). Dominated by bottom level
Master Theorem II

Let \(\alpha = \frac{a}{b^k} \)

\[T(n) = cn^k \sum_{i=1}^{\log_b n+1} (a/b^k)^{i-1} = cn^k \sum_{i=1}^{\log_b n+1} \alpha^{i-1} \]

- **Case 1:** \(\alpha = 1 \). All levels the same.
 \[T(n) = cn^k \sum_{i=1}^{\log_b n+1} 1 = \Theta(n^k \log n) \]

- **Case 2:** \(\alpha < 1 \). Dominated by top level.
 \[T(n) = O(n^k) \]

- **Case 3:** \(\alpha > 1 \). Dominated by bottom level
 \[T(n) = \Omega(n^k) \Rightarrow T(n) = \Theta(n^k) \]
 \[T(n) \geq cn^k \Rightarrow T(n) = \Omega(n^k) \Rightarrow T(n) = \Theta(n^k) \]

\[T(n) = \sum_{i=1}^{\log_b n+1} \alpha^{i-1} = \alpha^{\log_b n} \sum_{i=1}^{\log_b n+1} \left(\frac{1}{\alpha}\right)^{i-1} \leq \alpha^{\log_b n} \frac{1}{1 - (1/\alpha)} = O(\alpha^{\log_b n}) \]
Master Theorem II

Let $\alpha = (a/b^k)$

$$
\implies T(n) = cn^k \sum_{i=1}^{\log_b n+1} (a/b^k)^i - 1 = cn^k \sum_{i=1}^{\log_b n+1} \alpha^{i-1}
$$

- Case 1: $\alpha = 1$. All levels the same. $T(n) = cn^k \sum_{i=1}^{\log_b n+1} 1 = \Theta(n^k \log n)$
- Case 2: $\alpha < 1$. Dominated by top level.

$$
\implies \sum_{i=1}^{\log_b n+1} \alpha^{i-1} \leq \sum_{i=1}^{\infty} \alpha^{i-1} = \frac{1}{1-\alpha}.
$$

$$
\implies T(n) = O(n^k)
$$

$T(n) \geq cn^k \implies T(n) = \Omega(n^k) \implies T(n) = \Theta(n^k)$

- Case 3: $\alpha > 1$. Dominated by bottom level

$$
\implies \sum_{i=1}^{\log_b n+1} \alpha^{i-1} = \alpha^{\log_b n} \sum_{i=1}^{\log_b n+1} \left(\frac{1}{\alpha}\right)^{i-1} \leq \alpha^{\log_b n} \frac{1}{1 - (1/\alpha)}
$$

$$
= O(\alpha^{\log_b n})
$$

$$
\implies T(n) = \Theta(n^k \alpha^{\log_b n}) = \Theta(n^k (a/b^k)^{\log_b n}) = \Theta(a^{\log_b n})
$$

$$
= \Theta(n^{\log_b a})
$$
Master Theorem III

Theorem ("Master Theorem")

The recurrence

\[T(n) = aT\left(\frac{n}{b}\right) + cn^k \quad \text{for} \quad T(1) = c \]

where \(a, b, c,\) and \(k\) are constants with \(a \geq 1,\) \(b > 1,\) \(c > 0,\) and \(k \geq 0,\) is equal to

\[T(n) = \Theta(n^k) \quad \text{if} \quad a < b^k, \]

\[T(n) = \Theta(n^k \log n) \quad \text{if} \quad a = b^k, \]

\[T(n) = \Theta(n^{\log_b a}) \quad \text{if} \quad a > b^k. \]