Heaps / Priority Queues:

Want Operations:
- Insert \(H, x \): insert elt with key \(x \) into \(H \)
- Extract-Min \(H \): Remove and return elt with smallest key
- Decrease-Key \(H, x, k \): Decrease key of \(x \) in \(H \) to \(k \)
- Meld \(H_1, H_2 \): Replace heaps \(H_1, H_2 \) with their union

Extra ops:
- Find-Min \(H \): Return elt with smallest key
- Delete \(H, x \): Delete elt \(x \) from \(H \)

<table>
<thead>
<tr>
<th></th>
<th>Insert</th>
<th>E-M</th>
<th>D-K</th>
<th>Meld</th>
</tr>
</thead>
<tbody>
<tr>
<td>LL</td>
<td>(O(1))</td>
<td>(O(n))</td>
<td>(O(1))</td>
<td>(O(1))</td>
</tr>
<tr>
<td>Sorted list/tom</td>
<td>(O(n))</td>
<td>(O(1))</td>
<td>(O(n))</td>
<td></td>
</tr>
<tr>
<td>Balanced search tree</td>
<td>(O(\log n))</td>
<td>(O(\log n))</td>
<td>(O(\log n))</td>
<td>(O(n))</td>
</tr>
</tbody>
</table>
Amortized analysis of multiple operations

Types of ops i

m_i ops of type i

"amortized cost a_i, for type i"

\sum total time $\leq \sum a_i m_i$
Binary Heaps

Complete binary tree except maybe for bottom level (fill in L<R).

Heap order: every parent smaller than its children

Insert(C, t): Insert at next spot, "swim up": Time: $O(\log n)$
Extract-Min (H); swap root with last elt, return if "swim down" from root.

$\text{weed}(H_l, H_r) = O(n \log n)$

In reverse order (R-select): "swim down".

At height h root node t satisfies $t \leq n \leq 2^h$.

\[t \leq \frac{n}{2^{h+1}} \leq \frac{1}{2} \begin{cases} \log_2 n & \text{if } h \geq 0 \\ \frac{n}{2^{h+1}} & \text{if } h < 0 \end{cases} \leq O(h) \]
Anonymized Extract MIN:
\[w(x) = \text{depth} - x \]
\[T(n) = \sum_{x} w(x) \]

Insert: \(O(\log n) + O(\log n) = O(\log n) \)

Extract-MIN: \(1 + \log n + \Delta \log n \leq n \leq n \)
Lemma: B_k has the following properties:

1) Height k
2) 2^k nodes
3) $\deg\ (\text{root}) = k$
4) delete root, get $B_{k-1}, B_{k-2}, \ldots, B_0$
Def: Binary Heap: collection of binary trees, s.t. either 0 or 1 child, and every tree is heap ordered.

Write n as binary b_k b_{k-1} \ldots b_0.

\[\leq \text{less n trees in a heap} \]

\[\geq \text{less trees in heap} \]
Find Min: $O(\log n) + O = O(\log n)$
\[\text{Meld}(H_1, H_2) \]

Special case: \(H_1, H_2 \) both \(B_k \) (ex: \(B_3 \))

\[H_1 \quad \quad \quad \quad H_2 \]

\[\text{link of the } B_k \text{'s} \]
Time: worst-case $O(\log n)$
Analyzed $O(\log^2 n)$
Insert (H, ξ): Make B = F ξ. Meld

Time: it be K carries:

\[k + 1 - (k - 1) = 2 \]

100

1

100