Def: Decision problem Q is in NP if

1. there is a polynomial time algorithm $VCI(I, X)$ s.t.
 1) if I is a YES-instance of Q, then $\exists X$ with $1x1$ polynomial in I such that $VCI(I, X) = YES$
 2) if I is a NO-instance of Q, then $VCI(I, X) = NO \ \forall X$

Def: problem Q is NP-hard if $\forall Q' \leq_p Q \ \forall Q' \in NP$

Def: problem Q is NP-complete if Q is NP-hard and $Q \in NP$.

Def: A many-one reduction from A to B is a function f which takes arbitrary instances of A and turns them into instances of B s.t.

1) if x is YES in A then $f(x)$ is YES in B
2) If \(x \) No of A \(\Rightarrow f(x) \) No of B
3) \(f \) can be computed in polytime

Thm: Circuit-SAT is NP-Complete

Given boolean circuit with AND, OR, NOT gates, arbitrary fanout, 1 output. Is there a way of setting inputs so output = 1?

3-SAT: Given a Conjunctive normal form (CNF) formula over \(x_1, \ldots, x_n \), where each AND of ORs clause has \(\leq 3 \) variables. Is there an assignment to the variables that satisfies the formula?

\[
\text{Ex: } (x_1 \lor \overline{x}_2 \lor x_4) \land (x_2 \lor x_3 \lor x_5) \land (x_1 \lor x_4 \lor \overline{x}_6)
\]

Thm: 3-SAT is NP-complete

PF: In NP: \(\checkmark \)
NP-hard:

Goal: show \(\text{Circuit-SAT} \leq \text{3-SAT} \)

First: Change \(\text{Circuit-SAT} \) to only \(\text{NAND} \)

\[\begin{array}{c}
\text{AND} \Rightarrow \text{NAND} \\
\text{OR} \Rightarrow \text{NAND} \\
\text{XOR} \Rightarrow \text{NAND} \\
\end{array}\]

So given circuit \(C \), first transform it to only NANDs \(C' \)

Input: list of gates

\[g_1 = \text{NAND}(x_0, x_3) \quad g_3 = \text{NAND}(x_0, 1)\]
\[g_2 = \text{NAND}(x_0, x_4) \quad g_4 = \text{NAND}(x_5, x_2)\]

output gate \(g_m \)

\(n \) inputs \(x_0, \ldots, x_n \)

\(m \) gates \(g_0, \ldots, g_m \)
Many-one reduction to 3-SAT:
need to build 3CNF formula which preserves satisfiability of circuit

Variables:

\[y_1, y_2, \ldots, y_n, y_{n+1}, y_{n+2}, \ldots, y_{n+m} \]

\[\text{correspond to } x_i \text{'s} \quad \text{correspond to } g_i \text{'s} \]

Clauses:

Replace every

\[y_i = \text{NAND}(y_j, y_k) \]

with:

\[(y_i \lor y_j \lor y_k) \quad \text{if } y_j = 0, y_k = 0 \Rightarrow y_i = 1
 \]

\[\land (y_i \lor \overline{y_j} \lor y_k) \quad \text{if } y_j = 1, y_k = 0 \Rightarrow y_i = 1
 \]

\[\land (y_i \lor y_j \lor \overline{y_k}) \quad \text{if } y_j = 0, y_k = 0 \Rightarrow y_i = 1
 \]

\[\land (\overline{y_i} \lor \overline{y_j} \lor \overline{y_k}) \quad \text{if } y_j = 1, y_k = 1 \Rightarrow y_i = 0
 \]

Add clause \((y_{n+m})\)

Claim: This is a many-one reduction.

Proof: poly-time \(\checkmark\)
Set C YES of Circuit-SAT

⇒ ∃ setting x of input s.t. \(g_m = 1 \)

⇒ ∃ assignment to \(Y_0 \ldots Y_m \) s.t.

\[
Y_i = x_i \text{ if } i \leq n \\
Y_i = g_m \text{ if } i > n
\]

All classes satisfied ⇒ \(f(C) \) YES of 3-SAT

Set \(f(C) \) YES of 3-SAT

⇒ ∃ setting \(x \) s.t. all classes satisfied

set \(x_i = Y_i \) \(\forall i \leq n \)

⇒ output of gate \(g_i = Y_i + n \) (by construction)

⇒ \(g_m = 1 \) (since \((g_m) \) a clause)

⇒ YES of Circuit-SAT \(\checkmark \)

Graph Problems:

CLIQUE: Given \(G = (V, E) \), integer \(k \). Does \(G \) contain a clique of size \(\geq k \)?

\(S \subseteq V : \{ u \in S \land u \in S \} \land (u \neq v) \)

Then: CLIQUE is NP-complete
\textbf{NP-hard: Reduce 3-SAT to CLIQUE}

given 3-SAT instance F.

For every clause of F, create vertex for each satisfying assignment.

Edge between consistent assignments.

\textbf{Example: } $F = (x_1 \lor x_2 \lor \overline{x_4}) \land (\overline{x_3} \lor x_4) \land (\overline{x_2} \lor \overline{x_3})$...

Set \quad k = m
Claim: This is a many-one reduction.

poly time \(\checkmark\)

If \(F\) \(\text{YES}\) of \(3\)-SAT : \(C_k\) is not assigned

For each clause, choose vertex corresponding to \(k\).
\(\Rightarrow\) clique of size \(= m\)

If \(F\) \(\text{YES}\) of \(\text{CLIQUE}\):

\(\exists\) one vertex for each clause

\(\exists\) assignment to each variable consistent b/c clique

General method to prove \(Q\) is \(\text{NP-Complete}\):

1) Show \(Q\) is in \(\text{NP}\)

- can verify \(\text{YES}\)
- can catch false verification if \(\text{NO}\)

2) Find some \(\text{NP-hard}\) problem \(A\).

Reduce from \(A\) to \(Q\):

given instance \(I\) of \(A\), turn into
Independent set:

\[\text{Def: } S \subseteq V \text{ independent set in } G = (V, E) \]
\[\text{if } (u, v) \notin E \forall u, v \in S \]

INDEPENDENT SET: given \(G = (V, E) \), integer \(k \)

Does \(G \) have an independent set of size \(2k \)?

Thm: INDEPENDENT SET is NP-complete

Pf: In NP: \checkmark

NP-hard:

Reduce from [CLIQUE]:

Given \((G = (V, E), k) \) of [CLIQUE]

\[\Rightarrow \text{ H complement of } G : \{ u, v \} \in E \iff \{ u, v \} \notin E(G) \]

\[\Rightarrow \text{ H has IS of size } 2k \iff \]
A has clique of size $2k$

Vertex Cover:

Def: $S \subseteq V$ a vertex cover of $G = (V, E)$ if $S \cap \emptyset \neq \emptyset \subseteq E$

Vertex Cover: Given $G = (V, E)$, integer k.

Does G have a vertex cover of size $\leq k$?

Thm: Vertex cover is NP-complete

Pf: In NP:

NP-hard:

Reduction from INDEPENDENT SET

Given $(G = (V, E), k)$ of IS

Let $(G, n-k)$ of VC.

If G has IS S of size $\geq k$:

$\Rightarrow V \setminus S$ a VC of size $\leq n-k$
If $\psi \in UC \ S$ of size $\leq n-k$

$\Rightarrow \psi \in IS$ of size $\geq k$