NP-Completeness:

Def: An algorithm runs in polynomial time if its (worst-case) running time is \(O(n^c) \) for some constant \(c \) (where \(n \) = size of input).

Decision problem: output is either YES or NO.

Ex: Max flow as decision problem

"Is there a feasible flow of value \(\geq k \)?"

Def: \(\mathcal{P} \) is the set of decision problems solvable in polynomial time.

Different setting: if we’re given a solution, we can easily check if it’s valid (feasible).
Max-flow: check if flow, cap is obeyed, value $\geq k$

3-coloring: Given undirected $G=(V,E)$.
- *YES* if $\exists f: V \rightarrow \{0,\ 0,\ 1\}$ s.t.
 \[
 f(-) \neq f(v) \quad \forall \{u,v\} \in E
 \]
- *NO* otherwise

given f, check if valid: check colors of endpoints

Def: Decision problem Q is in NP if
- exists polynomial time algorithm $VC(I,X)$ (verifier) s.t.
 1) If I is a *YES*-instance of Q, then $\exists X$ with $|X|$ polynomial in $|I|$ s.t. $VC(I,X)=YES$
 2) If I is a *NO*-instance of Q, then $VC(I,X)=NO \ \forall X$

Examples:
- 3-coloring: witness: coloring f
verifier: checks each edge

Max-flow: witness: flow

verifier: check flow conservation, capacity, value 2k

Factoring: given integers Mk. YES if M has a factor in \(\{2, \ldots, k\}\), NO otherwise

witness: factor in \(\{2, \ldots, k\}\)

verifier: compute \(M(f, \text{check if integer} \)

Important asymmetry: witness for YES instance, not NO instances

Thm: \(P \leq NP \).

pf: Let \(x \in P \). Ignore \(X \), solve for instance.
Q: P = NP?

NP-Completeness and Reductions: How to prove \(P = NP \)?

Def: Problem \(A \) is **polytime reducible to** \(B \) \((A \leq_p B) \) if, given polytime algorithm for \(B \), we can use it to produce a polytime algorithm for \(A \).
Note: If $A \leq_p B$, then if B is in \mathcal{P}, so is A.

\implies B is “at least as hard” as A.

Def: A many-one reduction from A to B is a function f which takes arbitrary instances of A and turns them into instances of B s.t.

1) x is YES of $A \implies f(x)$ YES of B
2) x NO of $A \implies f(x)$ NO of B
3) f can be computed in polytime

Def: Problem Q is NP-hard if $Q_1 \leq_p Q$ & $Q_1 \in \text{NP}$

Def: Problem Q is NP-complete if Q is NP-hard and $Q \in \text{NP}$.

\[P \subset \text{NP} \subset \text{NP-complete} \]
Circuit - SAT:

Given boolean circuit with 1 output, no less/cycles, is there a way of setting inputs so output is 1?

Gates: AND

OR

NOT

Arbitrary fan-out
Then: Circuit-SAT is NP-complete.

In NP: Check if circuit outputs 1 on input X

NP hard:

Let A \in NP. Want to show A \leq P Circuit-SAT.

What do we know about A?

Has verifier algorithm V.

Algorithm: runs on a computer (or Turing machine).

Computer: Circuit + Memory!
Get rid of loops?

V is poly time!
Final reduction: given input I of A, construct circuit for V, hardware I.

If I YES: \exists x s.t. UC(I, x) = YES
 \Rightarrow circuit outputs 1
 \Rightarrow YES of Circuit-SAT

If circuit YES of Circuit-SAT \Rightarrow
 \exists x s.t. circuit outputs 1
 \Rightarrow UC(I, x) = YES \Rightarrow YES of A.