Shortest Paths

- Directed Graph $G = (V, E)$
- Length $\text{len}(x, y)$ on (x, y)
- $\text{len}(P) = \sum_{(x, y) \in P} \text{len}(x, y)$
- $d(x, y) = \min_{x \to y \text{ path } P} \text{len}(P)$

Today: Single source shortest path from some node v to all other nodes

$d(u) = d(v, u)$

Representation:

![Diagram of a directed graph with shortest paths marked]
Alg 1: Bellman-Ford

Dynamic Programming

Subproblems: $OPT(v)$

$OPT(v, i) =$ shortest path to v with $\leq i$ hops

Then:

$\text{len}(OPT(v, k)) = \begin{cases} 0 & \text{if } v = v_0, k = 0 \\ \infty & \text{if } v = v_k, k = 0 \\ \min \left(\text{len}(OPT(v, k-1)) + \text{len}(v, u) \right) & \text{otherwise} \end{cases}$

$\text{RT}, k = 0$: definition

$k > 0$: let v be argmin \(u \in \text{EE} \) \(\text{len}(OPT(v, k-1)) + \text{len}(v, u) \)

\Rightarrow $OPT(v, k-1)$ path with $k-1$ hops, length $\text{len}(OPT(v, k-1)) + \text{len}(v, u)$

\Rightarrow $\text{len}(OPT(v, k)) \leq \min \left(\text{len}(OPT(v, k-1)) + \text{len}(v, u) \right)$
Now get obvious dynamic program!

\[MC, 0 \] = \infty \quad \forall \ v \in V, \ n \notin V
\]

\[MC, 0 \] = 0

\[
\text{for } (k = 1 \text{ to } n-1) \ \\
\quad \text{for } (v \in V) \ \\
\quad \ \\
\quad \text{MC}(v, k) = \min_{w : (v, w) \in E} \left(MC(w, k-1) + \text{len}(w, u) \right)
\]
Then: After BF completes,
\[MC(u, k) = \text{len}(\text{OPT}(u, k)) \quad \forall k \leq u, \forall u \in V \]

PF: \(k < 0 \): definition

Inductive step:

\[MC(u, k) = \min_w (MC(u, k-1) + \text{len}(w, u)) \]

\[\text{def of alg} = \min_w (\text{len}(\text{OPT}(w, k-1)) + \text{len}(w, u)) \]

\[\text{induction} = \text{len}(\text{OPT}(w, k)) \]

Running time:

\[\# \text{table entries: } n^2 \]

\[\text{time/table entry: } \frac{n}{n^3} \]

Then: time \(O(mn) \)
PE: For each k, consider every edge once.

Negative Weights + Cycles:

1) BF good with negative edges
2) BF can be used to detect neg. weight cycles.
 Run one more iteration, check if changed
Relaxation is common primitive in shortest path algorithms.

\(\hat{d}(u) \): upper bound on \(d(u) \)

Init: \(\hat{d}(u) = \infty \) \(\forall u \notin V \)
\(\hat{d}(v) = 0 \)

relax \((x, y) \): can we improve \(\hat{d}(y) \) by going through \(x \)?

```plaintext
relax \( (x, y) \) {
    if \( (\hat{d}(y) > \hat{d}(x) + \text{len}(x, y)) \) {
        \( \hat{d}(y) = \hat{d}(x) + \text{len}(x, y) \)
        \( y.\text{parent} = x \)
    }
}
```
BF as relaxations:

\[f_{-v}(i = 1 \text{ to } n) \{ \]
\[\quad \text{parallel} \]
\[\quad \text{foreach } (u \in V) \{ \]
\[\quad \quad \text{foreach edge } (x, u), \relax(x, u) \]
\[\} \]
\[\} \]
Dijkstra's Algorithm

"greedy starting at u"

\[T = \emptyset \]
\[\hat{d}(v) = 0, \quad \hat{d}(u) = \infty \quad \forall u \in V \]

while (not all nodes in \(T \))
 let \(u \notin T \) be node with minimum \(\hat{d}(u) \)
 add \(u \) to \(T \)
 for each edge \((u, x)\) with \(x \in T\)
 relax \((u, x)\)
Thm: Throughout alg:

1) \(T \) is a shortest-path tree from \(u \) to vertex \(v \) in \(T \)
2) \(\hat{d}(u) = d(u) \) \(\forall u \in T \)

Pf: Induction on \# iterations of alg.

Base case: \(v \) added at time 1 with \(\hat{d}(v) = \hat{d}(v) = 0 \)

Inductive step: add \(u \) to \(T \), \(u.\text{parent} = u \)

\(\Rightarrow \hat{d}(u) = \hat{d}(v) + \text{len}(w,u) = \hat{d}(v) + \text{len}(w,u) \)

\[\hat{d}(v) \leq \text{len}(v,y) + \text{len}(y,z) \leq \text{len}(v,w) + \text{len}(w,z) \leq \text{len}(x,v) + \text{len}(v,w) = \hat{d}(v) \]
Running Time:
Alg needs to:
- select node with \(\min \hat{d} \) \(n \) times
- decrease \(\hat{d} \) values \(\leq 1 \) time per relaxation
\(\Rightarrow \leq m \) times total

If store \(\hat{d}(v) \) with \(v \) in a list:
- select takes \(O(n) \) time, decrease \(O(1) \)
\(\Rightarrow \) total \(O(n^2 + mn) = O(n^2) \)

Use heap!
Need:
- Insert \((n \) times)
- Extract-Min \((n \) times)
- Decrease-Key \((n \) times)
Binary Heap:

$O(\log n)$ each op. (amortized)

$\Rightarrow O(m \log n) = O(n \log n)$ total

if G connected

Fib. Heap:

Insert, Decrease-key $O(1)$ amortized

Extract-min $O(\log n)$ amortized

$\Rightarrow O(m + n \log n)$