Universal and Perfect Hashing

Hashing basics

- keys from universe U
- set $S \subseteq U$ of keys we care about
 \[|S| = N \]
- hash table A of size $M = \{0, 1, \ldots, M-1\}$
- hash function $h: U \rightarrow CM$
- want to store $x \in U$ in $A[h(x)]$
 what if $h(x) = h(y)$?

- Collision resolution: separate chaining
Insert \((x) \):

- *Add to beginning of list at \(AH(x) \)*

Lookup \((x) \):

- walk down list at \(AH(x) \) until find \(x \)

Delete \((x) \):

- walk down list at \(AH(x) \) until find \(x \), delete it.

Q: What should we use as \(h \)?

Properties we want:

- Few collisions
- Small \(M \) (\(M = O(N) \))
- \(h \) fast to compute, easy to store
Theorem: For any hash function \(h \), if
\[|U| \geq (N-1)M + 1, \]
then there exists set \(S \) of \(N \) elements that all hash to same location.

Proof: Pigeonhole.

By Pigeonhole, \(J \in \{ M \} \) s.t.
\[\# \text{elts of } U \text{ hash to } i \geq \frac{|U|}{M} > N-1 \]

Then

Random Function: When first sees
choose \(h(x) \) u.a.r. from \(CM \)
Def: A probability distribution \(H \) over hash fn's \(h : \mathcal{U} \rightarrow [M] \) is universal if
\[
\Pr_{h \sim H} \left[h(x) = h(y) \right] \leq \frac{1}{m}
\]
for all \(x, y \in \mathcal{U}, x \neq y \).

Thm: If \(H \) is universal, then \(\forall S \subseteq \mathcal{U} \)
\[
|S| = N, \quad \forall x \in \mathcal{U}, \text{ expected}
\]
\(\text{hash collisions} \) by \(x \), elts of \(S \) is
\[
\leq \frac{N}{m}
\]
\(\exists \forall y \) in expected \(O(\sqrt{N/m}) \) time.

Ex: let \(c_{xy} = \begin{cases} 1 & x = y \lor h(x) = h(y) \\ 0 & \text{else} \end{cases} \)
\[
\mathbb{E} \left[\mathbb{E} \left[c_{xy} \right] \right] = \mathbb{E} \left[\mathbb{E} \left[c_{xy} \right] \right] \leq \frac{1}{m}
\]
\[
\geq \left(\text{time } L \text{ ops} \right) = O \left(\sqrt{N} \cdot \frac{m}{N} \right)
\]
Def: If \(H \) is universal and is uniform \(\Pr \) over \(\{h_1, h_2, \ldots, h_M\} \), then we say \(H \) is a universal hash family.

\[u \in \{0,1\}^u \]

\[M = 2^b \Rightarrow \text{All indices have } b \text{ bits} \]

\(H \) is all binary \(b \times n \) matrices

\[
\begin{align*}
S & \begin{pmatrix}
1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 1 & 0
\end{pmatrix} \\
& \times \begin{pmatrix}
0 & 1 \end{pmatrix} = \begin{pmatrix}
0 \\
1
\end{pmatrix}
\end{align*}
\]

\(h \) \(\text{hit} \)

\(h(x) = x \cdot h \)

Then: \(\Pr \left[\text{hit}(x) = h(y) \right] = \frac{1}{M} \)

\(h \sim H \)

\(\forall x, y \in U \subseteq \{0,1\}^n \)

\(x \neq y \)
First choose all cols of \(h \) except col \(i \).

\(h(x) \) determined \(h(y) = h(x) \) if \(\forall \) th col s.t. \(h(x) - \text{current } h(y) \).

\(\Pr[\text{t} h(y) = h(x)] = \frac{1}{2^b} = \frac{1}{M} \)

Perfect Hashing

Assume \(kn \leq S \), new changes

Method 1: \(O(N^2) \) space.

Thus, left \(h \) universal with \(M = N^2 \).

Then \(\Pr[\text{no collisions}] \geq \frac{1}{2} \)
There are \(\binom{N}{2} \) possible collisions.

Each happens with \(\leq \frac{1}{M} = \frac{1}{N^2} \).

So if there is a collision \(\leq \binom{N}{2} \cdot \frac{1}{N^2} = \frac{N(N-1)}{2N^2} < \frac{1}{2} \).

Method 2: \(O(N) \) space

\(M = N \) universal \(u = \text{CM} \)

Draw \(h \sim u \)

- Let \(n_i = \# \text{clits in } S \) hash to \(i \)
For every i

Build table of size c_i^2 at $A(c_i)$

Choose h_i universal for $[h_i \rightarrow c_i^2]$

Use perfect hashing with $0(c_i^2)$ space for c_i^2 hash families.

$$s_i = N + \sum_{i=1}^{N} c_i^2$$

Then $\Pr \left[\sum_{i=1}^{N} c_i^2 > 4N \right] < \frac{1}{2}$