1 Circulations (50 points)

Let’s look at some variations of max-flow. In class, we talked about algorithms to compute the maximum flow from a source s to a sink t in a directed graph $G = (V, E)$ when we are given edge capacities $c : E \rightarrow \mathbb{R}^+$. A valid flow was a function $f : E \rightarrow \mathbb{R} \geq 0$ so that $f(e) \leq c(e)$ for all $e \in E$, and for all nodes $v \in V \setminus \{s, t\}$ we required the flow in to equal the flow out, i.e. $\sum_u f(u, v) = \sum_u f(v, u)$. (In class we modified this a bit to add skew-symmetry, but that was a mathematical convenience – this is the original and equivalent definition).

(a) (25 points) What if we no longer have a single s and a single t? Instead, think of every node v as having a demand d_v. If d_v is positive then v wants flow; it is a sink. If d_v is negative then v wants to get rid of flow; it is a source. And if $d_v = 0$ then v wants to simply transit flow; it is neither a source nor a sink. A valid circulation is an assignment $f : E \rightarrow \mathbb{R} \geq 0$ such that $\ell(e) \leq f(e) \leq c(e)$ for all $e \in E$, and $\sum_u f(u, v) - \sum_u f(v, u) = d_v$ for all $v \in V$ (i.e. at every node the flow-in minus the flow-out is equal to the demand).

Given a directed graph with capacities and demands, give a polynomial-time algorithm to determine whether a valid circulation exists. Prove correctness and polynomial running time. Hint: reduce to max-flow.

(b) (25 points) Let’s make things even more complicated. Capacities are an upper bound on flow – we are not allowed to send more flow through an edge than its capacity allows. What if we also want to have lower bounds? That is, in addition to capacities c, we are also given lower bounds $\ell : E \rightarrow \mathbb{R}_{\geq 0}$ and we require $\ell(e) \leq f(e) \leq c(e)$ for all $e \in E$?

Let’s redefine a valid circulation with these lower bounds. We are now given a directed graph $G = (V, E)$, capacities $c : E \rightarrow \mathbb{R}^+$, lower bounds $\ell : E \rightarrow \mathbb{R}_{\geq 0}$, and for each vertex v we are given a demand d_v. A valid circulation is now a function $f : E \rightarrow \mathbb{R} \geq 0$ such that $\ell(e) \leq f(e) \leq c(e)$ for all $e \in E$, and $\sum_u f(u, v) - \sum_u f(v, u) = d_v$.

Give a polynomial-time algorithm to determine whether a valid circulation exists. Prove correctness and polynomial running time. Hint: Try to transform the problem into finding a circulation without lower bounds, i.e. the setting of part (a). You might want to start by initially setting $f(e) = \ell(e)$ for all e. This will not be a valid circulation, but what does the “remaining” problem look like?
2 Realizable Degree Sequences (50 points)

Recall that the in-degree of a vertex v in a directed graph is the number of edges that go into v, i.e. the number of edges of the form (u, v). Similarly, the out-degree is the number of edges leaving v, i.e. the number of edges of the form (v, u). Let $d_{v,\text{in}}$ denote the in-degree of v, and let $d_{v,\text{out}}$ denote the out-degree. In this problem we will not allow any loops (edges of the form (u, u)) or multiedges (i.e. any edge (u, v) can only be in the graph at most once, although both (u, v) and (v, u) could be in the graph).

(a) (15 points) Suppose you are given the following set of degree constraints for a four-node directed graph:

- $d_{1,\text{in}} = 0, d_{1,\text{out}} = 2$
- $d_{2,\text{in}} = 1, d_{2,\text{out}} = 2$
- $d_{3,\text{in}} = 1, d_{3,\text{out}} = 1$
- $d_{4,\text{in}} = 3, d_{4,\text{out}} = 0$

Is there a directed graph, with no multi-edges or self-loops, that satisfies these constraints? If so, what is it? If not, why not?

(b) (35 points) This type of specification, where we are given the in- and out-degrees of every vertex, is called a degree sequence. The question above was whether a particular degree sequence is realizable – that is, whether there exists a graph having those degrees.

Give a polynomial-time algorithm that, given a degree sequence, will determine if it is realizable, and if it is will produce a directed graph with those degrees. The graph should not have any self loops or multi-edges (i.e. for each directed pair (i, j) with $i \neq j$ there can be at most one edge from i to j, although it is fine if there is also an edge from j to i). Prove that your algorithm is correct, and runs in polynomial time.

Hint: think flow with integer capacities.