8.1 Quick announcements

- Grading: sorry we’re behind already. We’ll try to catch up quick. HW1 grades should be released very soon. We are trying to get HW2 graded before the midterm so that you have a good sense of your current grade, but it looks like we won’t quite make it. However, by this weekend we will definitely have posted solutions for homeworks 2 and 3.

- Speaking of the first midterm: it’s next Tuesday! So because of that, you get a week off from homework. I suggest that you study.

- Material on the exam: it will cover everything up through (and including) this week. That doesn’t mean that there will be questions on everything that we’ve covered, just that there might be.

8.2 Introduction

Today we’re going to talk about binary search trees. I assume everyone is familiar with basic binary search trees, or at least the basic concept. You should probably know at least one of the famous balanced search trees such as red-black trees, 2-3 trees, AVL trees, B-trees, etc. But since that’s covered in the Data Structures class, I’m not going to talk about them here. Instead, we’re going to talk about an advanced (and amazing) binary search tree known as a splay tree, invented by Sleator and Tarjan. But first, let’s remember the basics. I’ll go through the basics of search trees quickly, since you’ve all seen them before. If for some reason you haven’t, then I’d suggest reading the appropriate chapters of CLRS.

8.2.1 Search Tree Basics

Let’s recall the basics. We want a way to build a dictionary: we have elements which have keys, and we want to be able to insert elements, lookup elements based on their key, and (possibly) delete elements based on their key. So, for example, we might have a piece of data associated with the key 10, and we might have another piece of data associated with the key 7. Later, we want to be able to lookup 10 and get the data associated with it. Of course, there’s nothing special about having integers as keys – we just need the keys to be comparable.

A binary search tree is one way of doing this (not the only way, as we’ll talk about next class). The idea is to keep the data in a tree, where each element is one node and comparing the key we’re searching for to the key stored in a node tells us where to look next for the key. Slightly more formally, a binary search tree is a binary tree with a key and elements stored at each node, where for each node u the key at u is larger than all keys in the left subtree of u, while it is smaller than all keys in the right subtree of u. Insertions into the tree are required to maintain this invariant.
the exact insertion method depends on the algorithm, but generally they basically do something similar to a Find query on the key we’re inserting, and then adding the new node in the place it would have been if it existed already.

Once we have this structure, finding a key is easy. We just start at the root, compare the key we’re looking for to the key at the root, and walk down to the appropriate child. We keep doing this until we either find the key, or reach the bottom of the tree (in which case the key is not stored in the tree). Clearly this is correct, and also clearly the running time of a Find query is (in the worst case) equal to the height of the tree (the longest distance from the root to any leaf). So most work on binary search trees tries to make them balanced. If every node had the same number of nodes in its left subtree as in its right subtree, then we essentially have a complete binary tree and hence the height is at most $\log n$. Thus Find queries would take $O(\log n)$ time.

Since exact balance is hard to achieve when we are constantly inserting (and sometimes removing) things, we usually want approximate balance. If we can guarantee that at every node the number of children in the left subtree is approximately the same as the number in the right subtree, then it’s not hard to see that the height is still $O(\log n)$ so the time for a Find is still $O(\log n)$. This is the approach taken by red-black trees, AVL trees, etc, all of which have $O(\log n)$-worst case running time for Find (and for Insert).

8.3 Splay Trees

Splay trees take a different approach, and provide what is (in some sense) a weaker bound. We are only going to get $O(\log n)$-amortized time bounds. Some Find queries might actually take a long time (even $\Omega(n)$) to complete. In return, we will get a much simpler algorithm with much less to keep track of, as well as a number of nice properties which we won’t really have time to talk about. Informally, though, it turns out that for splay trees you can prove the Static Optimality Theorem: if you compare the cost of doing m queries on any fixed tree (such as a red-black tree or AVL tree after we have finished all inserts), then the splay tree is (essentially) optimal. This is true even if we know the sequence of Finds ahead of time, and can tailor our search tree exactly to the sequence of Finds! Splay trees manage this despite not knowing the queries in advance.

8.3.1 Tree rotations

Tree rotations are a fundamental building block in most binary search trees, including splay trees. It’s an operation which (in constant time) allows us to move a node one level higher in the tree, while still ensuring the search tree property by rearranging the tree structure appropriately. By repeatedly rotating the same node, we can eventually move it up to the root. This turns out to be a useful ability.

A basic rotation works as in the following figure. This is also called rotating on u, or $\text{Rotate}(u)$, since it moves u up one level.
Clearly after we do a rotate we still have a search tree, and now g is one level closer to the root (the parent of k pre-rotation is the parent of g post-rotation). I haven’t drawn it, but clearly there’s an equivalent rotation operation when g starts out as the right child of k.

8.3.2 Splay Tree operations

Splay trees are usually described in terms of three basic operations that extend simple rotations: the zig operation, the zig-zag operation, and the zig-zig operation. Note that a basic rotation of a node only considers the parent and children. For a splay tree, we also need to consider the grandparent. The two major operations (zig-zig and zig-zag) move a node up two levels at a time, and then a zig is a one-level operation that is necessary in case the height is odd.

Zig: The zig operation is the simplest: it is just a simple rotation. We only use it when there is no grandparent, i.e. the parent of the node that we’re at is the root.

Zig-Zag: The zig-zag operation is also pretty simple: it’s just two rotations (Rotate(u) followed by Rotate(u) again). We only do it when the direction of the edge from the grandparent to the parent is different from the direction of the edge from the parent to the node. So there are two settings when we can use a zig-zag: if the node is the right child of the parent and the parent is the left child of the grandparent, or if the node is the left child of the parent and the parent is the right child of the grandparent. In this case, we can essentially do two rotations so that the node takes the place of the grandparent.
Zig-Zig: This is the operation which makes splay trees different from just simple rotations. There are two cases which are not covered by zig-zag: if the node is the left child of the parent and the parent is the left child of the grandparent, or if the the node is the right child of the parent and the parent is the right child of the grandparent. In these cases, instead of doing two rotations on \(u \), we rotate on \(p \) and then rotate on \(u \). This is called a zig-zig operation, and changes the tree as in the following figure.
8.3.3 Splay Tree algorithm

With these three operations in hand, it’s easy to define the splay tree algorithm. The combination of these three operations is called a splay. That is, we say that we “splay” a node u if we first check which of the three situations it is in, and then apply the appropriate operation (zig, zig-zag, or zig-zig). So instead of rotating a node up to the root, in a splay tree we splay it up to the root.

On a Find query, we first walk down the tree as in every binary search tree to find the key. But once we have it, instead of returning it, we first splay it to the root, and then return it. Thus unlike trees you might be used to, in a splay tree a Find operation actually changes the structure of the tree.

An Insert operation is done the same way: we walk down the tree to figure out where to insert it, then insert it as a new leaf, and then splay it to the root.

8.4 Splay Tree Analysis

Note that a single operation might take a long time: the tree could get extremely unbalanced if we have a particularly bad sequence of queries, in which case a single operation could take $\Omega(n)$ time. The amazing thing is that this cannot happen very often: the amortized complexity of a Find or an Insert is only $O(\log n)$.

We will think of a single splay operation as having cost 1. This means that in the end, we’ll get amortized bounds on the number of splay operations. Since each splay operation takes a constant amount of time, this will give us bounds on the running time (we’re ignoring the cost of walking down the tree on a find or insert, since whenever we walk down we splay up the same amount, and so the adding in the walk down would (at most) double the running time).

We first need a few definitions. In the following, T is a (splay) tree and u is an arbitrary node in T.

- Let $s(u)$ (called the size of u) be the number of nodes in the subtree rooted at u (including u itself).
- Let $r(u) = \lfloor \log(s(u)) \rfloor$ (called the rank of u).
- Let $\Phi = \sum_{u \in T} r(u)$. This is the potential function that we will use.

Let’s start by noticing some easy properties of ranks.

1. Doing a rotate on u affects the ranks of only u and p, and the rank of u after the rotation is equal to the rank of p before the rotation.

2. If two siblings both have rank r, then the parent has rank $r + 1$. To see this, let u and v be siblings of rank r with parent p. Then by the definition of rank, $2^r \leq s(u) < 2^{r+1}$ and $2^r \leq s(u) < 2^{r+1}$, and hence (when we include p in $s(p)$) we get that $2^{r+1} + 1 \leq s(p) < 2^{r+2}$. This implies that $r(p) = i + 1$.
3. Suppose that a node \(u \) and its parent \(p \) both have rank \(r \). Then \(v \), the other child of \(p \), has rank less than \(r \). Again, this is just by figuring out the sizes: if \(v \) also had rank \(r \), then we would have that \(s(p) \geq s(u) + s(v) \geq 2^r + 2^r = 2^{r+1} \) and so \(p \) would have rank \(r + 1 \).

Now let’s analyze the change in potential cause by each of the three splay operations. Let \(r \) be the rank function before the operation, and let \(r' \) be the rank function after.

Lemma 8.4.1 In a zig operation, \(\Delta \Phi \leq r'(u) - r(u) \)

Proof: Only \(p \) and \(u \) change rank, so by definition \(\Delta \Phi = r'(p) - r(p) + r'(u) - r(u) \). By our first property of ranks, we know that \(r'(u) = r(p) \), so we get that \(\Delta \Phi = r'(p) - r(u) \leq r'(u) - r(u) \).

Lemma 8.4.2 In a zig-zag or zig-zig operation, \(\Delta \Phi \leq 3(r'(u) - r(u)) - 1 \)

Proof: Note that only \(g \), \(p \), and \(u \) change ranks, so \(\Delta \Phi = r'(g) - r(g) + r'(p) - r(p) + r'(u) - r(u) \). We analyze the two operations separately.

- Consider a zig-zag operation. We split into two cases, depending on the initial ranks.

 First, suppose that \(r(g) = r(u) = r \) (and thus also \(r(p) = r \)). By our first property of ranks, we know that \(r'(u) = r \). So by the last two properties of ranks, either \(r'(p) \) or \(r'(g) \) is strictly less than \(r \). Thus \(\Delta \Phi \leq -1 = 3(r'(u) - r(u)) - 1 \).

 In the second case, suppose that \(r(g) > r(u) \). Since \(r(g) = r'(u) \), we know that \(\Delta \Phi = r'(g) + r'(p) - r(p) - r(u) \). Now by the last two properties of ranks, we know that \(r'(g) + r'(p) \leq 2r'(u) - 1 \), and we also know that \(r(p) \geq r(u) \). Hence \(\Delta \Phi \leq 2r'(u) - 1 - 2r(u) = 2(r'(u) - r(u)) - 1 \).

- Now consider a zig-zig operation. We again break into the same two cases.

 In the first case, suppose that \(r(g) = r(u) = r \) (and thus \(r(p) = r \) also). Recall that when we do a zig-zig, we first rotate \(p \) and then rotate \(u \). After rotating \(p \), the rank of \(p \) and the rank of \(u \) are still both \(r \), but \(g \) is now a child of \(p \) and thus its rank must be strictly less than \(r \). Now when we rotate \(u \) the rank of \(u \) becomes \(r \), the rank of \(p \) becomes at most \(r \), and the rank of \(g \) is still strictly less than \(r \). Hence \(\Delta \Phi \leq -1 = 3(r'(u) - r(u)) - 1 \).

 In the second case, suppose that \(r(g) > r(u) \). As always, \(r'(u) \) and \(r(g) \) cancel out and so \(\Delta \Phi = r'(g) + r'(p) - r(p) - r(u) \). Now we know that \(r'(g) + r'(p) \leq 2r'(u) \), and also that \(r(p) \geq r(u) \), so we get that \(\Delta \Phi \leq 2r'(u) - 2r(u) = 2(r'(u) - r(u)) \). Since \(r'(u) - r(u) \geq 1 \), we can conclude that \(\Delta \Phi \leq 3(r'(u) - r(u)) - 1 \).

So in every case, \(\Delta \Phi \leq 3(r'(u) - r(u)) - 1 \).

We can now prove the main lemma.

Lemma 8.4.3 The amortized cost of splaying a node to the root is \(O(\log n) \)

Proof: We just need to bound the amortized cost of splaying an arbitrary node \(u \) up to the root of the tree. This will consist of a series of zig-zig or zig-zag operations, and then possibly one zig operation. Let \(g_1 \) be the grandparent of \(u \), let \(g_2 \) be the grandparent of \(g_1 \), etc., until we get a node \(g_k \) which is either the root or a child of the root. We will assume that \(g_k \) is a child of the root, since that is the more difficult case. So in total we will do \(k \) ZZ operations and one zig operation.
Let r_i be the rank function after we have done i splay operations, and let $\Phi_i = \sum_{v \in T} r_i(v)$ be the potential after i splay operations. Then the total amortized cost is

$$
\sum_{i=1}^{k+1} (1 + \Phi_i - \Phi_{i-1}) \leq \sum_{i=1}^{k} (1 + 3(r_i(u) - r_{i-1}(u)) - 1) + (1 + 3(r_{k+1}(u) - r_k(u))) \\
\leq \sum_{i=1}^{k} 3(r_i(u) - r_{i-1}(u)) + 1 \\
= 3(r_{k+1}(u) - r_0(u)) + 1 \\
\leq 3 \log n + 1.
$$

Now we’re essentially done! On a Find or an Insert, the time is essentially (up to a constant factor for the walk down) equal to the cost of splaying a node up to the root, and hence is at most $O(\log n)$. Slightly more formally, we get the following corollary.

Theorem 8.4.4 The running time of doing m operations on a splay tree with at most n nodes is $O(m \log n + n \log n)$.

Proof: As we saw before when doing amortized analysis, the actual running time of doing a sequence of operations is equal to their amortized running time plus the initial potential minus the final potential. Since the final potential is at least 0 and the initial potential is at most $n \log n$, this means that the actual running time is $O(m \log n + n \log n)$.

8.4.1 More results

It turns out that splay trees have other, very appealing properties. I’m only going to discuss these informally, but there’s a lot more on the internet. If you’re interested, do some googling!

Static Optimality: Suppose that we want a binary search tree for a specific access sequence. Then we clearly will use our knowledge of this sequence to make a better (fixed) tree – we can put the most accessed elements towards the top of the tree, for example. Informally, as long as we do at least n Finds, it turns out that splay trees are self-optimizing: they perform at least as well (up to a constant factor) as the best fixed tree.

Working Set: Suppose that we want to access item x, and let $k(x)$ be the number of distinct items that we have accessed since the last time we accessed x. Then the amortized time to access x is only $O(1 + \log(k(x)))$. So if we have a small “working set” (number of items that we access regularly), then the cost of each access is actually less than $O(\log n)$.

Dynamic Optimality Conjecture: This is only a conjecture at this point, not a theorem. The conjecture is that splay trees are, up to a constant factor, as good as any other dynamic tree on every single access sequence. Here by a dynamic tree we mean a tree that is allowed to change through rotations. So for any access sequence, not only are splay trees as good as the best fixed tree, the conjecture is that they are as good as the best dynamic tree.