Min-Makespan on Identical Parallel Machines

Input: Jobs J ($|J| = n$)
- Machines M ($|M| = k$)
- Processing times $p : J \rightarrow N$

Feasible solution: $\mathcal{I} : J \rightarrow M$

Objective: $\text{min makespan} = \min_{m \in M} \max_{j \in J} \sum_{i : i \in \mathcal{I}(j) = m} p(i)$

Thus: greedy is a 2-approximation.

Want to do better!
Idea: What if we have a “guess” T for OPT?

Def: A \((1+\epsilon)\)-relaxed decision procedure is an algorithm which, given input and T:

1) If $T \geq OPT$, returns a solution with makespan $\leq (1+\epsilon)T$
2) If $T < OPT$, either returns “false” or returns a solution with makespan $\leq (1+\epsilon) \cdot OPT$

Let $P = \sum_{j \in J} p(j)$. Then $1 \leq OPT \leq P$

Idea: do binary search to find value of T s.t.
procedure returns a solution on T, “false” on $T-1$

$\implies T \leq OPT$

\implies solution has makespan $\leq (1+\epsilon) \cdot OPT$

Takes $O(\log P)$ iterations: poly-time!

So just want to design such a procedure, given guess T.

Def: $J_{\text{max}} = \{ j \in J : p(j) \leq \epsilon T^3 \}$

$J_{\text{true}} = \{ j \in J : p(j) > \epsilon T^3 \}$
Then, given schedule for \(T \) with makespan \(\leq (1 + \epsilon) T \), we can find a schedule for \(J \) with makespan \(\leq (1 + \epsilon) \max(T, OPT) \).

Proof:

Start with schedule for \(T \).

- Sort jobs on \(T \) in arbitrary order, add job to least-loaded machine.

Consider machine \(m \).

- (Case 1): \(m \) has no small jobs.
 \[\Rightarrow \text{load} \leq (1 + \epsilon) T \]

- (Case 2): \(m \) has \(\geq 1 \) small job.
 greedy analysis:

 Let \(j \) be last small job assigned to \(m \)
 \[\Rightarrow p(j) \leq \epsilon \cdot T \]
 \[\Rightarrow \text{load on } m \text{ just before } j \leq OPT \]
 \[\Rightarrow \text{total load} \leq OPT + \epsilon T \leq (1 + \epsilon) \max(T, OPT) \]
So just need to schedule J_{use} with makespan $\leq (1+\varepsilon) T$

Let $b = \lceil \frac{I}{b^k} \rceil$, so $\frac{1}{b} \leq \varepsilon$

Def: Let $p_i'(j) = \left\lfloor \frac{p_i(j) b^k}{T} \right\rfloor \cdot \frac{T}{b^k}$ ("rounded instance")

p_j is p_j rounded down to multiple of $\frac{T}{b^2}$

$\Rightarrow p_i'(j) \leq p_i(j) \leq p_i'(j) + \frac{T}{b^2}$

$p_i'(j) = k \frac{T}{b^2}$ for some $k \in \{b, b^2, \ldots, b^{2k}\}$ (since $j \in J_{use}$)

For schedule \bar{J}, let $m_c(\bar{J})$ be makespan in original, $m_r(\bar{J})$ makespan in rounded.

Lemma 1: Let \bar{J} be schedule. Then $m_r(\bar{J}) \leq m(\bar{J})$

$p.j$.

$p_i'(j) \leq p_i(j)$ $\forall i, j$

Lemma 2: Let \bar{J} be schedule. Then $m(\bar{J}) \leq (1+\varepsilon) m_r(\bar{J})$ \bar{T}
Let m some machine

\[p'(i) \geq \frac{T}{b}, \quad |j^{*}(m)| \leq b \]

\[\sum_{i \in j^{*}(m)} p(i) \leq \sum_{i \in j^{*}(m)} \left(p'(i) + \frac{T}{5^k} \right) \]

\[= \sum_{i \in j^{*}(m)} p'(i) + \sum_{i \in j^{*}(m)} \frac{T}{5^k} \]

\[\leq T + \frac{T}{b} \leq T + \varepsilon T = (1 + \varepsilon)T \]

Suppose we had an algorithm to find some I with $m_r(I) \leq T$ if one exists

If $T \geq \text{OPT}$:

\[\exists I \text{ with } m(I) \leq T \Rightarrow m_r(I) \leq T \quad \text{ (Lemma 1)} \]

\[\Rightarrow \exists \text{ schedule } w/ \text{ makespan } \leq T \text{ in round } \]

\[\exists \text{ alg will find some } I' \text{ with } m_r(I') \leq T \]

\[m(I') \leq (1 + \varepsilon)T \quad \text{ (Lemma 2)} \]
If $T < \text{OPT}$:

If alg returns \mathcal{I}, have

\[m(\mathcal{I}) \leq (1 + \epsilon) T \] \quad \text{(Lemma 2)}

So just need to find \mathcal{I} with $m(\mathcal{I}) \leq T$ if one exists!

Def: A configuration is a tuple (a_1, a_2, \ldots, a_n) such that:

1) Each $a_i \in \{0, 1, \ldots, b\}$

2) $\sum_{i=1}^{b} a_i \cdot i \cdot \frac{T}{b^2} \leq T$

Idea: Look at jobs assigned to some machine, let a_i be the with $p'(j) = i \cdot \frac{T}{b^2}$

\Rightarrow get a configuration
Let $\mathcal{C}(T)$ be set of all configurations

$|\mathcal{C}(T)| \leq (b+1)^{b^2-b} = (b)^{b^2}$

Dynamic Programming: given (unidentified) jobs, how many machines are necessary?

More formally:

$f(n_1, n_2, \ldots, n_b) = \min \ m \ s.t. \ can \ schedule \ n_i \ jobs

of \ length \ i \cdot \frac{T}{b^2} \ & \ i \ with \ makespan \ \leq T$

$f(\varnothing) = 0$

$f(n_1, \ldots, n_b) =

1 + \min_{\delta \in \mathcal{C}(T)} f(n_1 - n_1, \ldots, n_b - n_b)$

Time table entry: $|\mathcal{C}(T)| = b^{b^2}$

table entries: $\leq b^{b^2}$
\[\text{total time} \leq n = O(\beta^3) = O(\beta^{0.75}) \]

Once table filled out, check entry corresponding to \(J_{\text{large}} \) (rounded)

If \(m \geq n \) return \(\exists \) with \(n_x(\exists) \leq T \)

If \(m \geq n \) return \(\exists \) with \(n(\exists) \leq T \)

\(\rightarrow \) return false

If \(\leq m \) return \(\exists \) with \(n_x(\exists) \leq T \)